Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1338332, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055360

RESUMO

Introduction: Genotyping large-scale gene bank collections requires an appropriate sampling strategy to represent the diversity within and between accessions. Methods: A panel of 44 common bean (Phaseolus vulgaris L.) landraces from the Alliance Bioversity and The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) gene bank was genotyped with DArTseq using three sampling strategies: a single plant per accession, 25 individual plants per accession jointly analyzed after genotyping (in silico-pool), and by pooling tissue from 25 individual plants per accession (seq-pool). Sampling strategies were compared to assess the technical aspects of the samples, the marker information content, and the genetic composition of the panel. Results: The seq-pool strategy resulted in more consistent DNA libraries for quality and call rate, although with fewer polymorphic markers (6,142 single-nucleotide polymorphisms) than the in silico-pool (14,074) or the single plant sets (6,555). Estimates of allele frequencies by seq-pool and in silico-pool genotyping were consistent, but the results suggest that the difference between pools depends on population heterogeneity. Principal coordinate analysis, hierarchical clustering, and the estimation of admixture coefficients derived from a single plant, in silico-pool, and seq-pool successfully identified the well-known structure of Andean and Mesoamerican gene pools of P. vulgaris across all datasets. Conclusion: In conclusion, seq-pool proved to be a viable approach for characterizing common bean germplasm compared to genotyping individual plants separately by balancing genotyping effort and costs. This study provides insights and serves as a valuable guide for gene bank researchers embarking on genotyping initiatives to characterize their collections. It aids curators in effectively managing the collections and facilitates marker-trait association studies, enabling the identification of candidate markers for key traits.

2.
PLoS One ; 19(5): e0302158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696404

RESUMO

High-throughput phenotyping brings new opportunities for detailed genebank accessions characterization based on image-processing techniques and data analysis using machine learning algorithms. Our work proposes to improve the characterization processes of bean and peanut accessions in the CIAT genebank through the identification of phenomic descriptors comparable to classical descriptors including methodology integration into the genebank workflow. To cope with these goals morphometrics and colorimetry traits of 14 bean and 16 forage peanut accessions were determined and compared to the classical International Board for Plant Genetic Resources (IBPGR) descriptors. Descriptors discriminating most accessions were identified using a random forest algorithm. The most-valuable classification descriptors for peanuts were 100-seed weight and days to flowering, and for beans, days to flowering and primary seed color. The combination of phenomic and classical descriptors increased the accuracy of the classification of Phaseolus and Arachis accessions. Functional diversity indices are recommended to genebank curators to evaluate phenotypic variability to identify accessions with unique traits or identify accessions that represent the greatest phenotypic variation of the species (functional agrobiodiversity collections). The artificial intelligence algorithms are capable of characterizing accessions which reduces costs generated by additional phenotyping. Even though deep analysis of data requires new skills, associating genetic, morphological and ecogeographic diversity is giving us an opportunity to establish unique functional agrobiodiversity collections with new potential traits.


Assuntos
Arachis , Phaseolus , Fenótipo , Phaseolus/genética , Phaseolus/anatomia & histologia , Phaseolus/crescimento & desenvolvimento , Arachis/genética , Arachis/crescimento & desenvolvimento , Algoritmos , Banco de Sementes , Aprendizado de Máquina , Inteligência Artificial
3.
Front Plant Sci ; 14: 1338377, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38304449

RESUMO

Crop diversity conserved in genebanks facilitates the development of superior varieties, improving yields, nutrition, adaptation to climate change and resilience against pests and diseases. Cassava (Manihot esculenta) plays a vital role in providing carbohydrates to approximately 500 million people in Africa and other continents. The International Center for Tropical Agriculture (CIAT) conserves the largest global cassava collection, housing 5,963 accessions of cultivated cassava and wild relatives within its genebank. Efficient genebank management requires identifying and eliminating genetic redundancy within collections. In this study, we optimized the identification of genetic redundancy in CIAT's cassava genebank, applying empirical distance thresholds, and using two types of molecular markers (single-nucleotide polymorphism (SNP) and SilicoDArT) on 5,302 Manihot esculenta accessions. A series of quality filters were applied to select the most informative and high-quality markers and to exclude low-quality DNA samples. The analysis identified a total of 2,518 and 2,526 (47 percent) distinct genotypes represented by 1 to 87 accessions each, using SNP or SilicoDArT markers, respectively. A total of 2,776 (SNP) and 2,785 (SilicoDArT) accessions were part of accession clusters with up to 87 accessions. Comparing passport and historical characterization data, such as pulp color and leaf characteristic, we reviewed clusters of genetically redundant accessions. This study provides valuable guidance to genebank curators in defining minimum genetic-distance thresholds to assess redundancy within collections. It aids in identifying a subset of genetically distinct accessions, prioritizing collection management activities such as cryopreservation and provides insights for follow-up studies in the field, potentially leading to removal of duplicate accessions.

4.
Front Plant Sci ; 13: 1008666, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570940

RESUMO

Introduction: Evaluations of interspecific hybrids are limited, as classical genebank accession descriptors are semi-subjective, have qualitative traits and show complications when evaluating intermediate accessions. However, descriptors can be quantified using recognized phenomic traits. This digitalization can identify phenomic traits which correspond to the percentage of parental descriptors remaining expressed/visible/measurable in the particular interspecific hybrid. In this study, a line of P. vulgaris, P. acutifolius and P. parvifolius accessions and their crosses were sown in the mesh house according to CIAT seed regeneration procedures. Methodology: Three accessions and one derived breeding line originating from their interspecific crosses were characterized and classified by selected phenomic descriptors using multivariate and machine learning techniques. The phenomic proportions of the interspecific hybrid (line INB 47) with respect to its three parent accessions were determined using a random forest and a respective confusion matrix. Results: The seed and pod morphometric traits, physiological behavior and yield performance were evaluated. In the classification of the accession, the phenomic descriptors with highest prediction force were Fm', Fo', Fs', LTD, Chl, seed area, seed height, seed Major, seed MinFeret, seed Minor, pod AR, pod Feret, pod round, pod solidity, pod area, pod major, pod seed weight and pod weight. Physiological traits measured in the interspecific hybrid present 2.2% similarity with the P. acutifolius and 1% with the P. parvifolius accessions. In addition, in seed morphometric characteristics, the hybrid showed 4.5% similarity with the P. acutifolius accession. Conclusions: Here we were able to determine the phenomic proportions of individual parents in their interspecific hybrid accession. After some careful generalization the methodology can be used to: i) verify trait-of-interest transfer from P. acutifolius and P. parvifolius accessions into their hybrids; ii) confirm selected traits as "phenomic markers" which would allow conserving desired physiological traits of exotic parental accessions, without losing key seed characteristics from elite common bean accessions; and iii) propose a quantitative tool that helps genebank curators and breeders to make better-informed decisions based on quantitative analysis.

5.
Nat Plants ; 8(5): 491-499, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35534721

RESUMO

Crop landraces have unique local agroecological and societal functions and offer important genetic resources for plant breeding. Recognition of the value of landrace diversity and concern about its erosion on farms have led to sustained efforts to establish ex situ collections worldwide. The degree to which these efforts have succeeded in conserving landraces has not been comprehensively assessed. Here we modelled the potential distributions of eco-geographically distinguishable groups of landraces of 25 cereal, pulse and starchy root/tuber/fruit crops within their geographic regions of diversity. We then analysed the extent to which these landrace groups are represented in genebank collections, using geographic and ecological coverage metrics as a proxy for genetic diversity. We find that ex situ conservation of landrace groups is currently moderately comprehensive on average, with substantial variation among crops; a mean of 63% ± 12.6% of distributions is currently represented in genebanks. Breadfruit, bananas and plantains, lentils, common beans, chickpeas, barley and bread wheat landrace groups are among the most fully represented, whereas the largest conservation gaps persist for pearl millet, yams, finger millet, groundnut, potatoes and peas. Geographic regions prioritized for further collection of landrace groups for ex situ conservation include South Asia, the Mediterranean and West Asia, Mesoamerica, sub-Saharan Africa, the Andean mountains of South America and Central to East Asia. With further progress to fill these gaps, a high degree of representation of landrace group diversity in genebanks is feasible globally, thus fulfilling international targets for their ex situ conservation.


Assuntos
Produtos Agrícolas , Melhoramento Vegetal , Produtos Agrícolas/genética , Ásia Oriental , América do Sul , Triticum/genética
6.
Nat Commun ; 11(1): 4572, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917907

RESUMO

Undomesticated wild species, crop wild relatives, and landraces represent sources of variation for wheat improvement to address challenges from climate change and the growing human population. Here, we study 56,342 domesticated hexaploid, 18,946 domesticated tetraploid and 3,903 crop wild relatives in a massive-scale genotyping and diversity analysis. Using DArTseqTM technology, we identify more than 300,000 high-quality SNPs and SilicoDArT markers and align them to three reference maps: the IWGSC RefSeq v1.0 genome assembly, the durum wheat genome assembly (cv. Svevo), and the DArT genetic map. On average, 72% of the markers are uniquely placed on these maps and 50% are linked to genes. The analysis reveals landraces with unexplored diversity and genetic footprints defined by regions under selection. This provides fertile ground to develop wheat varieties of the future by exploring specific gene or chromosome regions and identifying germplasm conserving allelic diversity missing in current breeding programs.


Assuntos
Variação Genética , Genoma de Planta , Triticum/genética , Alelos , Domesticação , Genótipo , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Tetraploidia
7.
G3 (Bethesda) ; 6(7): 1819-34, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27172218

RESUMO

This study examines genomic prediction within 8416 Mexican landrace accessions and 2403 Iranian landrace accessions stored in gene banks. The Mexican and Iranian collections were evaluated in separate field trials, including an optimum environment for several traits, and in two separate environments (drought, D and heat, H) for the highly heritable traits, days to heading (DTH), and days to maturity (DTM). Analyses accounting and not accounting for population structure were performed. Genomic prediction models include genotype × environment interaction (G × E). Two alternative prediction strategies were studied: (1) random cross-validation of the data in 20% training (TRN) and 80% testing (TST) (TRN20-TST80) sets, and (2) two types of core sets, "diversity" and "prediction", including 10% and 20%, respectively, of the total collections. Accounting for population structure decreased prediction accuracy by 15-20% as compared to prediction accuracy obtained when not accounting for population structure. Accounting for population structure gave prediction accuracies for traits evaluated in one environment for TRN20-TST80 that ranged from 0.407 to 0.677 for Mexican landraces, and from 0.166 to 0.662 for Iranian landraces. Prediction accuracy of the 20% diversity core set was similar to accuracies obtained for TRN20-TST80, ranging from 0.412 to 0.654 for Mexican landraces, and from 0.182 to 0.647 for Iranian landraces. The predictive core set gave similar prediction accuracy as the diversity core set for Mexican collections, but slightly lower for Iranian collections. Prediction accuracy when incorporating G × E for DTH and DTM for Mexican landraces for TRN20-TST80 was around 0.60, which is greater than without the G × E term. For Iranian landraces, accuracies were 0.55 for the G × E model with TRN20-TST80. Results show promising prediction accuracies for potential use in germplasm enhancement and rapid introgression of exotic germplasm into elite materials.


Assuntos
Genoma de Planta , Modelos Estatísticos , Característica Quantitativa Herdável , Triticum/genética , Adaptação Fisiológica/genética , Secas , Interação Gene-Ambiente , Genótipo , Temperatura Alta , Irã (Geográfico) , México , Modelos Genéticos , Fenótipo , Seleção Genética , Estresse Fisiológico , Triticum/classificação
8.
Sci Rep ; 6: 23092, 2016 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-26976656

RESUMO

Climate change and slow yield gains pose a major threat to global wheat production. Underutilized genetic resources including landraces and wild relatives are key elements for developing high-yielding and climate-resilient wheat varieties. Landraces introduced into Mexico from Europe, also known as Creole wheats, are adapted to a wide range of climatic regimes and represent a unique genetic resource. Eight thousand four hundred and sixteen wheat landraces representing all dimensions of Mexico were characterized through genotyping-by-sequencing technology. Results revealed sub-groups adapted to specific environments of Mexico. Broadly, accessions from north and south of Mexico showed considerable genetic differentiation. However, a large percentage of landrace accessions were genetically very close, although belonged to different regions most likely due to the recent (nearly five centuries before) introduction of wheat in Mexico. Some of the groups adapted to extreme environments and accumulated high number of rare alleles. Core reference sets were assembled simultaneously using multiple variables, capturing 89% of the rare alleles present in the complete set. Genetic information about Mexican wheat landraces and core reference set can be effectively utilized in next generation wheat varietal improvement.


Assuntos
Cromossomos de Plantas/genética , Variação Genética , Genoma de Planta/genética , Triticum/genética , Algoritmos , Alelos , Fluxo Gênico , Frequência do Gene , Genótipo , Geografia , México , Modelos Genéticos , Fenótipo , Filogenia , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Poliploidia , Análise de Componente Principal , Especificidade da Espécie , Triticum/classificação
9.
PLoS One ; 10(7): e0132112, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26176697

RESUMO

Identifying and mobilizing useful genetic variation from germplasm banks to breeding programs is an important strategy for sustaining crop genetic improvement. The molecular diversity of 1,423 spring bread wheat accessions representing major global production environments was investigated using high quality genotyping-by-sequencing (GBS) loci, and gene-based markers for various adaptive and quality traits. Mean diversity index (DI) estimates revealed synthetic hexaploids to be genetically more diverse (DI= 0.284) than elites (DI = 0.267) and landraces (DI = 0.245). GBS markers discovered thousands of new SNP variations in the landraces which were well known to be adapted to drought (1273 novel GBS SNPs) and heat (4473 novel GBS SNPs) stress environments. This may open new avenues for pre-breeding by enriching the elite germplasm with novel alleles for drought and heat tolerance. Furthermore, new allelic variation for vernalization and glutenin genes was also identified from 47 landraces originating from Iraq, Iran, India, Afghanistan, Pakistan, Uzbekistan and Turkmenistan. The information generated in the study has been utilized to select 200 diverse gene bank accessions to harness their potential in pre-breeding and for allele mining of candidate genes for drought and heat stress tolerance, thus channeling novel variation into breeding pipelines. This research is part of CIMMYT's ongoing 'Seeds of Discovery' project visioning towards the development of high yielding wheat varieties that address future challenges from climate change.


Assuntos
Agricultura/métodos , Bases de Dados Genéticas , Genes de Plantas , Variação Genética , Triticum/genética , Alelos , DNA de Plantas/análise , Genótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
10.
BMC Genomics ; 16: 216, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25887001

RESUMO

BACKGROUND: Genotyping-by-sequencing (GBS) is a high-throughput genotyping approach that is starting to be used in several crop species, including bread wheat. Anchoring GBS tags on chromosomes is an important step towards utilizing them for wheat genetic improvement. Here we use genetic linkage mapping to construct a consensus map containing 28644 GBS markers. RESULTS: Three RIL populations, PBW343 × Kingbird, PBW343 × Kenya Swara and PBW343 × Muu, which share a common parent, were used to minimize the impact of potential structural genomic variation on consensus-map quality. The consensus map comprised 3757 unique positions, and the average marker distance was 0.88 cM, obtained by calculating the average distance between two adjacent unique positions. Significant variation of segregation distortion was observed across the three populations. The consensus map was validated by comparing positions of known rust resistance genes, and comparing them to wheat reference genome sequences recently published by the International Wheat Genome Sequencing Consortium, Rye and Ae. tauschii genomes. Three well-characterized rust resistance genes (Sr58/Lr46/Yr29, Sr2/Yr30/Lr27, and Sr57/Lr34/Yr18) and 15 published QTLs for wheat rusts were validated with high resolution. Fifty-two per cent of GBS tags on the consensus map were successfully aligned through BLAST to the right chromosomes on the wheat reference genome sequence. CONCLUSION: The consensus map should provide a useful basis for analyzing genome-wide variation of complex traits. The identified genes can then be explored as genetic markers to be used in genomic applications in wheat breeding.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Sequenciamento de Nucleotídeos em Larga Escala , Característica Quantitativa Herdável , Triticum/genética , Cromossomos de Plantas , Evolução Molecular , Ligação Genética , Marcadores Genéticos , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Endogamia , Doenças das Plantas/genética , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA