Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ecol Resour ; 19(4): 818-837, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30506631

RESUMO

Introgression is now commonly reported in studies across the Tree of Life, aided by recent advancements in data collection and analysis. Nevertheless, researchers working with nonmodel species lacking reference genomes may be stymied by a mismatch between available resources and methodological demands. In this study, we demonstrate a fast and simple approach for inferring introgression using RADseq data, and apply it to a case study involving spiny lizards (Sceloporus) from northeastern México. First, we find evidence for recurrent mtDNA introgression between the two focal species based on patterns of mito-nuclear discordance. We then test for nuclear introgression by exhaustively applying the "five-taxon" D-statistic (DFOIL ) to all relevant individuals sampled for RADseq data. In our case, this exhaustive approach (dubbed "ExDFOIL ") entails testing up to ~250,000 unique four-taxon combinations of individuals across species. To facilitate use of this ExDFOIL approach, we provide scripts for many relevant tasks, including the selection of appropriate four-taxon combinations, execution of DFOIL tests in parallel and visualization of introgression results in phylogenetic and geographic space. Using ExDFOIL , we find evidence for ancient introgression between the focal species. Furthermore, we reveal geographic variation in patterns of introgression that is consistent with patterns of mito-nuclear discordance and with recurrent introgression. Overall, our study demonstrates that the combination of DFOIL and RADseq data can effectively detect introgression under a variety of sampling conditions (for individuals, populations and loci). Importantly, we also find evidence that batch-specific error and linkage in RADseq data may mislead inferences of introgression under certain conditions.


Assuntos
Biologia Computacional/métodos , Evolução Molecular , Fluxo Gênico , Lagartos/genética , Análise de Sequência de DNA/métodos , Animais , Bioestatística/métodos , DNA Mitocondrial/genética , México
2.
Evolution ; 72(10): 2257-2266, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30101971

RESUMO

In a previous paper, we used simulations and empirical data to show that BAMM (Bayesian Analysis of Macroevolutionary Mixtures) can give misleading estimates of rates and rate shifts. In simulations, BAMM underestimated rate shifts across every tree analyzed, and assigned incorrect rates to most clades in most trees. In empirical analyses, BAMM behaved as expected from simulations, and assigned different rates to clades when clades were analyzed alone versus across the tree (i.e., with rate heterogeneity). Rabosky recently criticized our paper, focusing primarily on the idea that our comparison of BAMM to another approach (method-of-moments estimators of Magallón and Sanderson, or MS estimators) was unfair to BAMM. Here, we provide further evidence that BAMM gives misleading rate estimates in empirical studies. We then describe how Rabosky's rown method comparisons were either acknowledged as being problematic or were described inaccurately (to favor BAMM). Finally, we show that the MS estimators can perform well when rates vary over time, despite untested assertions that they require constant rates to be accurate. Many other methods are available for analyzing diversification rates: we argue that BAMM should be avoided for estimating both diversification rates and rate shifts.


Assuntos
Biodiversidade , Especiação Genética , Teorema de Bayes , Filogenia
3.
Evolution ; 72(1): 39-53, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29055133

RESUMO

Estimates of diversification rates are invaluable for many macroevolutionary studies. Recently, an approach called BAMM (Bayesian Analysis of Macro-evolutionary Mixtures) has become widely used for estimating diversification rates and rate shifts. At the same time, several articles have concluded that estimates of net diversification rates from the method-of-moments (MS) estimators are inaccurate. Yet, no studies have compared the ability of these two methods to accurately estimate clade diversification rates. Here, we use simulations to compare their performance. We found that BAMM yielded relatively weak relationships between true and estimated diversification rates. This occurred because BAMM underestimated the number of rates shifts across each tree, and assigned high rates to small clades with low rates. Errors in both speciation and extinction rates contributed to these errors, showing that using BAMM to estimate only speciation rates is also problematic. In contrast, the MS estimators (particularly using stem group ages), yielded stronger relationships between true and estimated diversification rates, by roughly twofold. Furthermore, the MS approach remained relatively accurate when diversification rates were heterogeneous within clades, despite the widespread assumption that it requires constant rates within clades. Overall, we caution that BAMM may be problematic for estimating diversification rates and rate shifts.


Assuntos
Teorema de Bayes , Simulação por Computador , Especiação Genética , Animais , Filogenia , Plantas/genética
4.
Am Nat ; 190(6): 828-843, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29166157

RESUMO

The Tropical Andes make up Earth's most species-rich biodiversity hotspot for both animals and plants. Nevertheless, the ecological and evolutionary processes underlying this extraordinary richness remain uncertain. Here, we examine the processes that generate high richness in the Tropical Andes relative to other regions in South America and across different elevations within the Andes, using frogs as a model system. We combine distributional data, a newly generated time-calibrated phylogeny for 2,318 frog species, and phylogenetic comparative methods to test the relative importance of diversification rates and colonization times for explaining Andean diversity at different scales. At larger scales (among regions and families), we find that faster diversification rates in Andean clades most likely explain high Andean richness. In contrast, at smaller temporal and spatial scales (within family-level clades within the Andes), diversification rates rarely explain richness patterns. Instead, we show that colonization times are important for shaping elevational richness patterns within the Andes, with more species found in habitats colonized earlier. We suggest that these scale-dependent patterns might apply to many other richness gradients. Recognition of this scale dependence may help to reconcile conflicting results among studies of richness patterns across habitats, regions, and organisms.


Assuntos
Altitude , Anuros/genética , Anuros/fisiologia , Biodiversidade , Especiação Genética , Animais , Modelos Biológicos , Filogenia , América do Sul , Fatores de Tempo , Clima Tropical
5.
Evolution ; 71(9): 2243-2261, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28815567

RESUMO

Patterns of species richness among clades can be directly explained by the ages of clades or their rates of diversification. The factors that most strongly influence diversification rates remain highly uncertain, since most studies typically consider only a single predictor variable. Here, we explore the relative impacts of macroclimate (i.e., occurring in tropical vs. temperate regions) and microhabitat use (i.e., terrestrial, fossorial, arboreal, aquatic) on diversification rates of squamate reptile clades (lizards and snakes). We obtained data on microhabitat, macroclimatic distribution, and phylogeny for >4000 species. We estimated diversification rates of squamate clades (mostly families) from a time-calibrated tree, and used phylogenetic methods to test relationships between diversification rates and microhabitat and macroclimate. Across 72 squamate clades, the best-fitting model included microhabitat but not climatic distribution. Microhabitat explained ∼37% of the variation in diversification rates among clades, with a generally positive impact of arboreal microhabitat use on diversification, and negative impacts of fossorial and aquatic microhabitat use. Overall, our results show that the impacts of microhabitat on diversification rates can be more important than those of climate, despite much greater emphasis on climate in previous studies.


Assuntos
Lagartos , Filogenia , Animais , Biodiversidade , Répteis , Serpentes
6.
Proc Biol Sci ; 281(1795)2014 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-25274369

RESUMO

The evolution of climatic niche specialization has important implications for many topics in ecology, evolution and conservation. The climatic niche reflects the set of temperature and precipitation conditions where a species can occur. Thus, specialization to a limited set of climatic conditions can be important for understanding patterns of biogeography, species richness, community structure, allopatric speciation, spread of invasive species and responses to climate change. Nevertheless, the factors that determine climatic niche width (level of specialization) remain poorly explored. Here, we test whether species that occur in more extreme climates are more highly specialized for those conditions, and whether there are trade-offs between niche widths on different climatic niche axes (e.g. do species that tolerate a broad range of temperatures tolerate only a limited range of precipitation regimes?). We test these hypotheses in amphibians, using phylogenetic comparative methods and global-scale datasets, including 2712 species with both climatic and phylogenetic data. Our results do not support either hypothesis. Rather than finding narrower niches in more extreme environments, niches tend to be narrower on one end of a climatic gradient but wider on the other. We also find that temperature and precipitation niche breadths are positively related, rather than showing trade-offs. Finally, our results suggest that most amphibian species occur in relatively warm and dry environments and have relatively narrow climatic niche widths on both of these axes. Thus, they may be especially imperilled by anthropogenic climate change.


Assuntos
Anfíbios/classificação , Anfíbios/fisiologia , Evolução Biológica , Clima , Ecossistema , Filogenia , Animais , Mudança Climática
7.
Ecol Lett ; 17(9): 1077-85, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24920382

RESUMO

Saturation is the idea that a community is effectively filled with species, such that no more can be added without extinctions. This concept has important implications for many areas of ecology, such as species richness, community assembly, invasive species and climate change. Here, we illustrate how biogeography can be used to test for community saturation, when combined with data on local species richness, phylogeny and climate. We focus on a clade of frogs (Terrarana) and the impact of the Great American Biotic Interchange on patterns of local richness in Lower Middle America and adjacent regions. We analyse data on species richness at 83 sites and a time-calibrated phylogeny for 363 species. We find no evidence for saturation, and show instead that biotic interchange dramatically increased local richness in the region. We suggest that historical biogeography offers thousands of similar long-term natural experiments that can be used to test for saturation.


Assuntos
Biodiversidade , Modelos Biológicos , Animais , Anuros/fisiologia , América Central , Geografia , Filogenia , Dinâmica Populacional , América do Sul
8.
Proc Biol Sci ; 280(1773): 20132156, 2013 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-24174109

RESUMO

Many clades contain ecologically and phenotypically similar species across continents, yet the processes generating this similarity are largely unstudied, leaving fundamental questions unanswered. Is similarity in morphology and performance across assemblages caused by evolutionary convergence or by biogeographic dispersal of evolutionarily conserved ecotypes? Does convergence to new ecological conditions erase evidence of past adaptation? Here, we analyse ecology, morphology and performance in frog assemblages from three continents (Asia, Australia and South America), assessing the importance of dispersal and convergent evolution in explaining similarity across regions. We find three striking results. First, species using the same microhabitat type are highly similar in morphology and performance across both clades and continents. Second, some species on different continents owe their similarity to dispersal and evolutionary conservatism (rather than evolutionary convergence), even over vast temporal and spatial scales. Third, in one case, an ecologically specialized ancestor radiated into diverse ecotypes that have converged with those on other continents, largely erasing traces of past adaptation to their ancestral ecology. Overall, our study highlights the roles of both evolutionary conservatism and convergence in explaining similarity in species traits over large spatial and temporal scales and demonstrates a statistical framework for addressing these questions in other systems.


Assuntos
Anuros/fisiologia , Evolução Biológica , Adaptação Fisiológica , Animais , Ásia , Austrália , Ecossistema , Filogenia , América do Sul
9.
Proc Natl Acad Sci U S A ; 110(28): 11469-74, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23798420

RESUMO

The assembly of regional biotas and organismal responses to anthropogenic climate change both depend on the capacity of organisms to adapt to novel ecological conditions. Here we demonstrate the concept of evolutionary lag time, the time between when a climatic regime or habitat develops in a region and when it is colonized by a given clade. We analyzed the time of colonization of four clades (three plant genera and one lizard genus) into the Atacama-Sechura Desert of South America, one of Earth's driest and oldest deserts. We reconstructed time-calibrated phylogenies for each clade and analyzed the timing of shifts in climatic distributions and biogeography and compared these estimates to independent geological estimates of the time of origin of these deserts. Chaetanthera and Malesherbia (plants) and Liolaemus (animal) invaded arid regions of the Atacama-Sechura Desert in the last 10 million years, some 20 million years after the initial onset of aridity in the region. There are also major lag times between when these clades colonized the region and when they invaded arid habitats within the region (typically 4-14 million years). Similarly, hyperarid climates developed ∼8 million years ago, but the most diverse plant clade in these habitats (Nolana) only colonized them ∼2 million years ago. Similar evolutionary lag times may occur in other organisms and habitats, but these results are important in suggesting that many lineages may require very long time scales to adapt to modern desertification and climatic change.


Assuntos
Biodiversidade , Evolução Biológica , Animais , Chile , Clima , Geografia
10.
Evolution ; 61(5): 1188-207, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17492971

RESUMO

Differences in species richness at different elevations are widespread and important for conservation, but the causes of these patterns remain poorly understood. Here, we use a phylogenetic perspective to address the evolutionary and biogeographic processes that underlie elevational diversity patterns within a region. We focus on a diverse but well-studied fauna of tropical amphibians, the hylid frogs of Middle America. Middle American treefrogs show a "hump-shaped" pattern of species richness (common in many organisms and regions), with the highest regional diversity at intermediate elevations. We reconstructed phylogenetic relationships among 138 species by combining new and published sequence data from 10 genes and then used this phylogeny to infer evolutionary rates and patterns. The high species richness of intermediate elevations seems to result from two factors. First, a tendency for montane clades to have higher rates of diversification. Second, the early colonization of montane regions, leaving less time for speciation to build up species richness in lowland regions (including tropical rainforests) that have been colonized more recently. This "time-for-speciation" effect may explain many diversity patterns and has important implications for conservation. The results also imply that local-scale environmental factors alone may be insufficient to explain the high species richness of lowland tropical rainforests, and that diversification rates are lower in earth's most species-rich biome.


Assuntos
Altitude , Anuros , Biodiversidade , Evolução Biológica , Clima Tropical , Animais , América Central , Geografia , México , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA