Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1834(12): 2823-31, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24157662

RESUMO

Centrins are calcium-binding proteins associated with microtubules organizing centers. Members of two divergent subfamilies of centrins were found in the aquatic fungus Blastocladiella emersonii, contrasting with the occurrence of only one member known for the better explored terrestrial fungi. BeCen1 shows greatest identity with human centrins HsCen1, HsCen2 and green algae centrin CrCenp, while BeCen3 records largest identity with human centrin HsCen3 and yeast centrin Cdc31p. Following the discovery of this unique feature, BeCen1 and BeCen3 centrins were produced to study whether these proteins had distinct features upon calcium binding. Circular dichroism showed opposite calcium binding effects on the α-helix arrangement of the secondary structure. The spectra indicated a decrease in α-helix signal for holo-BeCen1 contrasting with an increase for holo-BeCen3. In addition, only BeCen1 refolds after being de-natured. The fluorescence emission of the hydrophobic probe ANS increases for both proteins likely due to hydrophobic exposure, however, only BeCen1 presents a clear blue shift when calcium is added. ITC experiments identified four calcium binding sites for both proteins. In contrast to calcium binding to BeCen1, which is mainly endothermic, binding to BeCen3 is mainly exothermic. Light-scattering evidenced the formation of large particles in solution for BeCen1 and BeCen3 at temperatures above 30°C and 40°C, respectively. Atomic force microscopy confirmed the presence of supramolecular structures, which differ in the compactness and branching degree. Binding of calcium leads to different structural changes in BeCen1 and BeCen3 and the thermodynamic characteristics of the interaction also differ.


Assuntos
Blastocladiella/química , Cálcio/química , Proteínas Fúngicas/química , Dobramento de Proteína , Combinação Trimetoprima e Sulfametoxazol/química , Blastocladiella/metabolismo , Cálcio/metabolismo , Dicroísmo Circular , Proteínas Fúngicas/metabolismo , Humanos , Microscopia de Força Atômica , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Termodinâmica , Combinação Trimetoprima e Sulfametoxazol/metabolismo
2.
PLoS Negl Trop Dis ; 7(8): e2370, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23991231

RESUMO

A multi-step cascade strategy using integrated ligand- and target-based virtual screening methods was developed to select a small number of compounds from the ZINC database to be evaluated for trypanocidal activity. Winnowing the database to 23 selected compounds, 12 non-covalent binding cruzain inhibitors with affinity values (K i) in the low micromolar range (3-60 µM) acting through a competitive inhibition mechanism were identified. This mechanism has been confirmed by determining the binding mode of the cruzain inhibitor Nequimed176 through X-ray crystallographic studies. Cruzain, a validated therapeutic target for new chemotherapy for Chagas disease, also shares high similarity with the mammalian homolog cathepsin L. Because increased activity of cathepsin L is related to invasive properties and has been linked to metastatic cancer cells, cruzain inhibitors from the same library were assayed against it. Affinity values were in a similar range (4-80 µM), yielding poor selectivity towards cruzain but raising the possibility of investigating such inhibitors for their effect on cell proliferation. In order to select the most promising enzyme inhibitors retaining trypanocidal activity for structure-activity relationship (SAR) studies, the most potent cruzain inhibitors were assayed against T. cruzi-infected cells. Two compounds were found to have trypanocidal activity. Using compound Nequimed42 as precursor, an SAR was established in which the 2-acetamidothiophene-3-carboxamide group was identified as essential for enzyme and parasite inhibition activities. The IC50 value for compound Nequimed42 acting against the trypomastigote form of the Tulahuen lacZ strain was found to be 10.6±0.1 µM, tenfold lower than that obtained for benznidazole, which was taken as positive control. In addition, by employing the strategy of molecular simplification, a smaller compound derived from Nequimed42 with a ligand efficiency (LE) of 0.33 kcal mol(-1) atom(-1) (compound Nequimed176) is highlighted as a novel non-peptidic, non-covalent cruzain inhibitor as a trypanocidal agent candidate for optimization.


Assuntos
Antiprotozoários/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas de Protozoários/antagonistas & inibidores , Antiprotozoários/farmacologia , Cristalografia por Raios X , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Concentração Inibidora 50 , Cinética , Testes de Sensibilidade Parasitária/métodos , Ligação Proteica , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA