Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Clin Transl Oncol ; 25(8): 2487-2498, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36995521

RESUMO

OBJECTIVE: Esophageal squamous cell carcinoma (ESCC) is a common and aggressive malignancy of the gastrointestinal tract for which therapeutic options are scarce. This study screens for LOXL2, a key gene in ESCC, and explains the molecular mechanism by which it promotes the progression of ESCC. METHODS: Immunohistochemical staining was performed to detect the expression level of LOXL2 in ESCC tissues and paraneoplastic tissues. CCK-8 and Transwell assays were performed to assess the effects of LOXL2 knockdown and overexpression on the proliferation, apoptosis, migration and invasion ability of ESCC cells. High-throughput sequencing analysis screens for molecular mechanisms of action by which LOXL2 promotes ESCC progression. Western blotting and qRT-PCR were used to determine the expression levels of relevant markers. RESULTS: LOXL2 is positively expressed in ESCC and highly correlated with poor prognosis. Silencing LOXL2 significantly inhibited the proliferation, migration and invasive ability of ESCC cells, whereas overexpression showed the opposite phenotype. High-throughput sequencing suggested that LOXL2-associated differentially expressed genes were highly enriched in the PI3K/AKT signaling pathway. In vitro cellular assays confirmed that silencing LOXL2 significantly reduced PI3K, p-AKTThr308 and p-AKTSer473 gene and protein expression levels, while overexpression increased all three gene and protein levels, while AKT gene and protein expression levels were not significantly different. CONCLUSION: This study found that LOXL2 may regulate the PI3K/AKT signaling pathway and exert protumor effects on ESCC cells through phosphorylation of AKT. LOXL2 may be a key clinical warning biomarker or therapeutic target for ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Esofágicas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo , Fosforilação , Movimento Celular , Transdução de Sinais/genética , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
2.
Braz. J. Microbiol. ; 48(4): 656-670, Oct.-Dec. 2017. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-17478

RESUMO

ABSTRACT This study aimed to explore the effects of two siderophore-producing bacterial strains on iron absorption and plant growth of peanut in calcareous soil. Two siderophore-producing bacterial strains, namely, YZ29 and DZ13, isolated from the rhizosphere soil of peanut, were identified as Paenibacillus illinoisensis and Bacillus sp., respectively. In potted experiments, YZ29 and DZ13 enhanced root activity, chlorophyll and active iron content in leaves, total nitrogen, phosphorus and potassium accumulation of plants and increased the quality of peanut kernels and plant biomass over control. In the field trial, the inoculated treatments performed better than the controls, and the pod yields of the three treatments inoculated with YZ29, DZ13, and YZ29 + DZ13 (1:1) increased by 37.05%, 13.80% and 13.57%, respectively, compared with the control. Based on terminal restriction fragment length polymorphism analysis, YZ29 and DZ13 improved the bacterial community richness and species diversity of soil surrounding the peanut roots. Therefore, YZ29 and DZ13 can be used as candidate bacterial strains to relieve chlorosis of peanut and promote peanut growth. The present study is the first to explore the effect of siderophores produced by P. illinoisensis on iron absorption.(AU)


Assuntos
Paenibacillus/metabolismo , Paenibacillus/fisiologia , Solos Calcários
3.
Braz. j. microbiol ; 48(4): 656-670, Oct.-Dec. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889178

RESUMO

ABSTRACT This study aimed to explore the effects of two siderophore-producing bacterial strains on iron absorption and plant growth of peanut in calcareous soil. Two siderophore-producing bacterial strains, namely, YZ29 and DZ13, isolated from the rhizosphere soil of peanut, were identified as Paenibacillus illinoisensis and Bacillus sp., respectively. In potted experiments, YZ29 and DZ13 enhanced root activity, chlorophyll and active iron content in leaves, total nitrogen, phosphorus and potassium accumulation of plants and increased the quality of peanut kernels and plant biomass over control. In the field trial, the inoculated treatments performed better than the controls, and the pod yields of the three treatments inoculated with YZ29, DZ13, and YZ29 + DZ13 (1:1) increased by 37.05%, 13.80% and 13.57%, respectively, compared with the control. Based on terminal restriction fragment length polymorphism analysis, YZ29 and DZ13 improved the bacterial community richness and species diversity of soil surrounding the peanut roots. Therefore, YZ29 and DZ13 can be used as candidate bacterial strains to relieve chlorosis of peanut and promote peanut growth. The present study is the first to explore the effect of siderophores produced by P. illinoisensis on iron absorption.


Assuntos
Arachis/crescimento & desenvolvimento , Arachis/microbiologia , Bacillus/metabolismo , Paenibacillus/metabolismo , Ferro/metabolismo , Arachis/metabolismo , Arachis/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/microbiologia , Sementes/química , Solo/química , Microbiologia do Solo , Bacillus/isolamento & purificação , Bacillus/classificação , Bacillus/genética , Transporte Biológico , Sideróforos/metabolismo , Raízes de Plantas/microbiologia , Paenibacillus/isolamento & purificação , Paenibacillus/classificação , Paenibacillus/genética , Rizosfera , Inoculantes Agrícolas/metabolismo
4.
Braz J Microbiol ; 48(4): 656-670, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28645648

RESUMO

This study aimed to explore the effects of two siderophore-producing bacterial strains on iron absorption and plant growth of peanut in calcareous soil. Two siderophore-producing bacterial strains, namely, YZ29 and DZ13, isolated from the rhizosphere soil of peanut, were identified as Paenibacillus illinoisensis and Bacillus sp., respectively. In potted experiments, YZ29 and DZ13 enhanced root activity, chlorophyll and active iron content in leaves, total nitrogen, phosphorus and potassium accumulation of plants and increased the quality of peanut kernels and plant biomass over control. In the field trial, the inoculated treatments performed better than the controls, and the pod yields of the three treatments inoculated with YZ29, DZ13, and YZ29+DZ13 (1:1) increased by 37.05%, 13.80% and 13.57%, respectively, compared with the control. Based on terminal restriction fragment length polymorphism analysis, YZ29 and DZ13 improved the bacterial community richness and species diversity of soil surrounding the peanut roots. Therefore, YZ29 and DZ13 can be used as candidate bacterial strains to relieve chlorosis of peanut and promote peanut growth. The present study is the first to explore the effect of siderophores produced by P. illinoisensis on iron absorption.


Assuntos
Arachis/crescimento & desenvolvimento , Arachis/microbiologia , Bacillus/metabolismo , Ferro/metabolismo , Paenibacillus/metabolismo , Inoculantes Agrícolas/metabolismo , Arachis/química , Arachis/metabolismo , Bacillus/classificação , Bacillus/genética , Bacillus/isolamento & purificação , Transporte Biológico , Paenibacillus/classificação , Paenibacillus/genética , Paenibacillus/isolamento & purificação , Raízes de Plantas/microbiologia , Rizosfera , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/microbiologia , Sideróforos/metabolismo , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA