Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 354(6311): 459-465, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27789840

RESUMO

Experience shapes the development and connectivity of adult-born granule cells (GCs) through mechanisms that are poorly understood. We examined the remodeling of dentate gyrus microcircuits in mice in an enriched environment (EE). Short exposure to EE during early development of new GCs accelerated their functional integration. This effect was mimicked by in vivo chemogenetic activation of a limited population of mature GCs. Slice recordings showed that mature GCs recruit parvalbumin γ-aminobutyric acid-releasing interneurons (PV-INs) that feed back onto developing GCs. Accordingly, chemogenetic stimulation of PV-INs or direct depolarization of developing GCs accelerated GC integration, whereas inactivation of PV-INs prevented the effects of EE. Our results reveal a mechanism for dynamic remodeling in which experience activates dentate networks that "prime" young GCs through a disynaptic feedback loop mediated by PV-INs.


Assuntos
Giro Denteado/fisiologia , Retroalimentação Fisiológica , Rede Nervosa/fisiologia , Neurogênese , Neurônios/fisiologia , Animais , Giro Denteado/citologia , Feminino , Interneurônios/citologia , Interneurônios/metabolismo , Interneurônios/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Neurológicos , Neurônios/citologia , Parvalbuminas/metabolismo , Meio Social , Sinapses/fisiologia , Ácido gama-Aminobutírico/metabolismo
2.
J Neurophysiol ; 109(3): 711-20, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23155168

RESUMO

Signal processing in neuritic trees is ruled by the concerted action of passive and active membrane properties that, together, determine the degree of electrical compartmentalization of these trees. We analyzed how active properties modulate spatial propagation of graded signals in a pair of nonspiking (NS) neurons of the leech. NS neurons present a very extensive neuritic tree that mediates the interaction with all the excitatory motoneurons in leech ganglia. NS cells express voltage-activated Ca(2+) conductances (VACCs) that, under certain experimental conditions, evoke low-threshold spikes. We studied the distribution of calcium transients in NS neurons loaded with fluorescent calcium probes in response to low-threshold spikes, electrical depolarizing pulses, and synaptic inputs. The three types of stimuli evoked calcium transients of similar characteristics in the four main branches of the neuron. The magnitude of the calcium transients evoked by electrical pulses was a graded function of the change in NS membrane potential and depended on the baseline potential level. The underlying VACCs were partially inactivated at rest and strongly inactivated at -20 mV. Stimulation of mechanosensory pressure cells evoked calcium transients in NS neurons whose amplitude was a linear function of the amplitude of the postsynaptic response. The results evidenced that VACCs aid an efficient propagation of graded signals, turning the vast neuritic tree of NS cells into an electrically compact structure.


Assuntos
Potenciais de Ação , Neurônios Motores/fisiologia , Potenciais Sinápticos , Animais , Cálcio/metabolismo , Canais de Cálcio/fisiologia , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/fisiologia , Sanguessugas , Mecanorreceptores/fisiologia , Mecanotransdução Celular
3.
Artigo em Inglês | MEDLINE | ID: mdl-19034463

RESUMO

The NS neurons are nonspiking cells, present as pairs in each midbody ganglion of the leech nervous system, which display a very extensive arborization. They were shown to regulate the coactivation of motoneurons. Here we have investigated the electrophysiological properties of these neurons under the hypothesis that transmission along the extensive neurites requires the aid of voltage-dependent conductances. The results indicate that NS neurons respond to electrical stimulation with a spike-like event, which was not an all-or-none but rather a graded phenomenon that depended on the intensity and duration of the electrical stimulus. The spike-like response was activated at a membrane potential of approximately -50 mV; its amplitude was a logarithmic function of the extracellular Ca2+ concentration and was unaffected by a broad range of changes in the extracellular Na+ concentration; intracellular application of tetraethylammonium (TEA) caused a large increase in its amplitude and duration. These data indicate that NS neurons bear voltage-dependent low-threshold Ca2+ and TEA-sensitive K+ conductances that could contribute to shaping synaptic signals, or transmission along the extensive neuritic tree.


Assuntos
Cálcio/metabolismo , Sanguessugas/fisiologia , Potenciais da Membrana/fisiologia , Condução Nervosa/fisiologia , Neurônios/fisiologia , Animais , Técnicas de Patch-Clamp , Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA