Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Rev. invest. clín ; 76(1): 6-17, Jan.-Feb. 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1560124

RESUMO

ABSTRACT Background: Adriamycin (ADM) resistance remains an obstacle to gastric cancer chemotherapy treatment. Objective: The objective of this study was to study the role and mechanism of transcription factor E2F7 in sensitivity to ADM chemotherapeutic agents in gastric cancer. Methods: Cell viability and cell sensitivity were assessed by CCK-8 and IC50 values of ADM were calculated. The impact of ADM on cellular proliferative capacity was assessed through colony formation assay. The binding relationship between E2F7 and PKMYT1 was then verified by dual luciferase assay and chromatin immunoprecipitation assay. ERK1/ERK2 and p-ERK1/p-ERK2 protein expression levels were detected by western blot. Results: In both gastric cancer tissue and ADM-resistant cells, a conspicuous upregulation of E2F7 and PKMYT1 was observed. Upregulated PKMYT1 was notably enriched in the MAPK signaling pathway. Enhanced levels of E2F7 were shown to not only drive gastric cancer cell proliferation but also engender a reduction in the sensitivity of these cells to ADM. Furthermore, PKMYT1 emerged as a downstream target of E2F7. Activation of E2F7 culminated in the transcriptional upregulation of PKMYT1, and silencing E2F7 reversed the inhibitory impact of PKMYT1 overexpression on ADM sensitivity in gastric cancer cells. Conclusion: E2F7/PKMYT1 axis might promote the proliferation and partially inhibit ADM sensitivity of gastric cancer cells by activating the MAPK pathway.

2.
Rev Invest Clin ; 76(1): 6-17, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38253021

RESUMO

Background: Adriamycin resistance remains an obstacle to gastric cancer chemotherapy treatment. Objective: The objective of this study was to study the role and mechanism of transcription factor E2F7 in sensitivity to ADM chemotherapeutic agents in gastric cancer. Methods: Cell viability and cell sensitivity were assessed by CCK-8 and IC50 values of ADM were calculated. The impact of ADM on cellular proliferative capacity was assessed through colony formation assay. The binding relationship between E2F7 and PKMYT1 was then verified by dual luciferase assay and chromatin immunoprecipitation assay. ERK1/ERK2 and p-ERK1/p-ERK2 protein expression levels were detected by western blot. Results: In both gastric cancer tissue and ADM-resistant cells, a conspicuous upregulation of E2F7 and PKMYT1 was observed. Upregulated PKMYT1 was notably enriched in the MAPK signaling pathway. Enhanced levels of E2F7 were shown to not only drive gastric cancer cell proliferation but also engender a reduction in the sensitivity of these cells to ADM. Furthermore, PKMYT1 emerged as a downstream target of E2F7. Activation of E2F7 culminated in the transcriptional upregulation of PKMYT1, and silencing E2F7 reversed the inhibitory impact of PKMYT1 overexpression on ADM sensitivity in gastric cancer cells. Conclusion: E2F7/PKMYT1 axis might promote the proliferation and partially inhibit ADM sensitivity of gastric cancer cells by activating the MAPK pathway.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Doxorrubicina/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição E2F7/genética , Fator de Transcrição E2F7/metabolismo , Proteínas de Membrana/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA