Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genet Mol Res ; 15(1): 15013904, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26985944

RESUMO

Paclitaxel (PTX) is a mitotic inhibitor widely used in chemotherapy for many types of cancers, including solid tumors and hematological malignancies. However, the molecular basis of the anti-proliferation activity of PTX is not fully understood. In this paper, we focused on the role of c-Jun N-terminal kinase (JNK) pathways in PTX-induced apoptosis and proliferation inhibition. The effects of PTX were examined in human leukemia cell lines and patients' chronic lymphocytic leukemia (CLL) cells in relation to mitochondrial events, apoptosis, and perturbation of JNK activation using flow cytometry, siRNA, mitochondrial membrane potential determination, and western blotting. Exposure of cells to PTX at concentrations ≥ 10 nM for 18 or 24 h resulted in a significant release of cytochrome c from mitochondria to the cytosol, cleavages of procaspase 3 and poly (ADP-ribose) polymerase (PARP), and JNK activation, leading to apoptosis. The pan-caspase inhibitor BOC-D-FMK blocked the PTX-induced apoptosis but had no effect on cytochrome c release, suggesting that cytochrome c had been released before caspase activation. Moreover, both pharmacological JNK inhibitors SP600125 and JNK siRNA dramatically blocked PTX-induced apoptosis, cytochrome c release, caspase 3, and PARP cleavage. These findings demonstrate that JNK activation plays a critical role in the induction of apoptosis mediated by PTX in human leukemia cell lines and CLL patient-derived primary cancer cells, and this event is upstream of cytochrome c release, caspase 3, and PARP cleavage.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Leucemia/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Paclitaxel/farmacocinética , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Células Jurkat , Leucemia/tratamento farmacológico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Paclitaxel/farmacologia
2.
Genet Mol Res ; 14(4): 13764-78, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26535692

RESUMO

Here, we characterized the structure and function of the coagulation factor II (FII) gene in grass carp and determined its role in coagulation mechanisms. The FII gene EST was obtained using a constructed splenic transcriptome database; the full-length FII gene sequence was obtained by 3' and 5' RACE. The open reading frame (ORF) of FII was cloned and the full-length gene was found to be 1718 bp, with an ORF of 1572 bp; the gene contained a 25 bp 5'-untranslated region (UTR) and 108 bp 3'-UTR. The ORF encoded 524 amino acids, including 74 alkaline amino acids (arginine and lysine) and 69 acidic amino acids (aspartic acid and glutamic acid). The theoretical pI was 6.22. The calculated instability index (II) was 39.81, indicating that FII was a stable protein; the half-life period was predicted to be approximately 30 h. Amino acid sequence comparisons indicated that grass carp FII showed most similarity (71%) to FII of Takifugu rubripes, followed by Oplegnathus fasciatus (48% similarity) and Larimichthys crocea (47% similarity). A real-time reverse transcription PCR analysis showed that under normal circumstances, FII was most highly expressed in the liver, followed by the gill, spleen, thymus, and head-kidney (P < 0.001). After injection of the grass carp reovirus 873 (GCRV873), the pattern of FII expression was significantly altered (P < 0.001); gene expression was high after injection, suggesting a response involving the initiation of the coagulation system and defense of the body in combination with the platelet and complement system.


Assuntos
Carpas/genética , Clonagem Molecular , Expressão Gênica , Protrombina/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar , Evolução Molecular , Modelos Moleculares , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Filogenia , Conformação Proteica , Protrombina/química , Splicing de RNA , RNA Mensageiro/genética , Alinhamento de Sequência , Análise de Sequência de DNA
3.
Genet Mol Res ; 14(2): 4989-5002, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25966274

RESUMO

This study aimed to determine the effect of mangiferin on the cell cycle in HL-60 leukemia cells and expression of the cell cycle-regulatory genes Wee1, Chk1 and CDC25C and to further investigate the molecular mechanisms of the antileukemic action of mangiferin. The inhibitory effect of mangiferin on HL-60 leukemia cell proliferation was determined by the MTT assay. The impact of mangiferin on the HL-60 cell cycle was evaluated by flow cytometry. After the cells were treated with different concentrations of mangiferin, the expression levels of Wee1, Chk1 and CDC25C mRNA were determined by RT-PCR, and Western blot was used to evaluate the expression levels of cdc25c, cyclin B1, and Akt proteins. The inhibition of HL-60 cell growth by mangiferin was dose- and time-dependent. After treatment for 24 h, cells in G2/M phase increased, and G2/M phase arrest appeared with increased mRNA expression of Wee1, Chk1 and CDC25C. Mangiferin inhibited Chk1 and cdc25c mRNA expression at high concentrations and induced Wee1 mRNA expression in a dose-dependent manner. It significantly inhibited ATR, Chk1, Wee1, Akt, and ERK1/2 phosphorylation but increased cdc2 and cyclin B1 phosphorylation. Furthermore, mangiferin reduced cdc25c, cyclin B1, and Akt protein levels while inducing Wee1 protein expression. It also antagonized the phosphorylation effect of vanadate on ATR, and the phosphorylation effect of EGF on Wee1. These findings indicated that mangiferin inhibits cell cycle progression through the ATR-Chk1 stress response DNA damage pathway, leading to cell cycle arrest at G2/M phase in leukemia cells.


Assuntos
Leucemia/tratamento farmacológico , Proteínas Quinases/genética , Xantonas/administração & dosagem , Proteínas Mutadas de Ataxia Telangiectasia/biossíntese , Proteínas Mutadas de Ataxia Telangiectasia/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica , Células HL-60 , Humanos , Leucemia/genética , Leucemia/patologia , Proteínas de Neoplasias/biossíntese , Proteínas Quinases/biossíntese , RNA Mensageiro , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA