Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecology ; 99(5): 1129-1138, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29460277

RESUMO

We present a meta-analysis of plant responses to fertilization experiments conducted in lowland, species-rich, tropical forests. We also update a key result and present the first species-level analyses of tree growth rates for a 15-yr factorial nitrogen (N), phosphorus (P), and potassium (K) experiment conducted in central Panama. The update concerns community-level tree growth rates, which responded significantly to the addition of N and K together after 10 yr of fertilization but not after 15 yr. Our experimental soils are infertile for the region, and species whose regional distributions are strongly associated with low soil P availability dominate the local tree flora. Under these circumstances, we expect muted responses to fertilization, and we predicted species associated with low-P soils would respond most slowly. The data did not support this prediction, species-level tree growth responses to P addition were unrelated to species-level soil P associations. The meta-analysis demonstrated that nutrient limitation is widespread in lowland tropical forests and evaluated two directional hypotheses concerning plant responses to N addition and to P addition. The meta-analysis supported the hypothesis that tree (or biomass) growth rate responses to fertilization are weaker in old growth forests and stronger in secondary forests, where rapid biomass accumulation provides a nutrient sink. The meta-analysis found no support for the long-standing hypothesis that plant responses are stronger for P addition and weaker for N addition. We do not advocate discarding the latter hypothesis. There are only 14 fertilization experiments from lowland, species-rich, tropical forests, 13 of the 14 experiments added nutrients for five or fewer years, and responses vary widely among experiments. Potential fertilization responses should be muted when the species present are well adapted to nutrient-poor soils, as is the case in our experiment, and when pest pressure increases with fertilization, as it does in our experiment. The statistical power and especially the duration of fertilization experiments conducted in old growth, tropical forests might be insufficient to detect the slow, modest growth responses that are to be expected.


Assuntos
Florestas , Clima Tropical , Nitrogênio , Panamá , Fósforo , Solo , Árvores
2.
Ecology ; 92(8): 1616-25, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21905428

RESUMO

We maintained a factorial nitrogen (N), phosphorus (P), and potassium (K) addition experiment for 11 years in a humid lowland forest growing on a relatively fertile soil in Panama to evaluate potential nutrient limitation of tree growth rates, fine-litter production, and fine-root biomass. We replicated the eight factorial treatments four times using 32 plots of 40 x 40 m each. The addition of K was associated with significant decreases in stand-level fine-root biomass and, in a companion study of seedlings, decreases in allocation to roots and increases in height growth rates. The addition of K and N together was associated with significant increases in growth rates of saplings and poles (1-10 cm in diameter at breast height) and a further marginally significant decrease in stand-level fine-root biomass. The addition of P was associated with a marginally significant (P = 0.058) increase in fine-litter production that was consistent across all litter fractions. Our experiment provides evidence that N, P, and K all limit forest plants growing on a relatively fertile soil in the lowland tropics, with the strongest evidence for limitation by K among seedlings, saplings, and poles.


Assuntos
Ecossistema , Nitrogênio/farmacologia , Fósforo/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Potássio/farmacologia , Árvores/crescimento & desenvolvimento , Nitrogênio/química , Fósforo/química , Raízes de Plantas/efeitos dos fármacos , Potássio/química , Solo/química , Árvores/efeitos dos fármacos , Clima Tropical
3.
Proc Natl Acad Sci U S A ; 104(3): 864-9, 2007 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-17215353

RESUMO

The importance of niche vs. neutral assembly mechanisms in structuring tropical tree communities remains an important unsettled question in community ecology [Bell G (2005) Ecology 86:1757-1770]. There is ample evidence that species distributions are determined by soils and habitat factors at landscape (<10(4) km(2)) and regional scales. At local scales (<1 km(2)), however, habitat factors and species distributions show comparable spatial aggregation, making it difficult to disentangle the importance of niche and dispersal processes. In this article, we test soil resource-based niche assembly at a local scale, using species and soil nutrient distributions obtained at high spatial resolution in three diverse neotropical forest plots in Colombia (La Planada), Ecuador (Yasuni), and Panama (Barro Colorado Island). Using spatial distribution maps of >0.5 million individual trees of 1,400 species and 10 essential plant nutrients, we used Monte Carlo simulations of species distributions to test plant-soil associations against null expectations based on dispersal assembly. We found that the spatial distributions of 36-51% of tree species at these sites show strong associations to soil nutrient distributions. Neutral dispersal assembly cannot account for these plant-soil associations or the observed niche breadths of these species. These results indicate that belowground resource availability plays an important role in the assembly of tropical tree communities at local scales and provide the basis for future investigations on the mechanisms of resource competition among tropical tree species.


Assuntos
Solo/análise , Árvores/fisiologia , Clima Tropical , Ecossistema , Concentração de Íons de Hidrogênio , Dinâmica Populacional , América do Sul
4.
Oecologia ; 141(4): 687-700, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15322901

RESUMO

It is now understood that alterations in the species composition of soil organisms can lead to changes in aboveground communities. In this study, we assessed the importance of spatial scale and forest size on changes in arbuscular mycorrhizal fungal (AMF) spore communities by sampling AMF spores in soils of forested mainland and island sites in the vicinity of Gatun Lake, Republic of Panama. We encountered a total of 27 AMF species or morphospecies, with 17, 8, 1 and 1 from the genera Glomus, Acaulospora, Sclerosystis, and Scutellospora, respectively. At small scales (<100 m2), we found little evidence for spatial structuring of AMF communities (decay of Morisita-Horn community similarity with distance). However, at large spatial scales, we found that the AMF spore community of a mainland plot was more similar to other mainland plots several kilometers (>5) away than to nearby island plots (within 0.7 km). Likewise, most island plots were more similar to other island plots regardless of geographic separation. There was no decay in AMF species richness (number of species), or Shannon diversity (number of species and their spore numbers) either with decreasing forest-fragment size, or with decreasing plant species richness. Of the six most common species that composed almost 70% of the total spore volume, spores of Glomus "tsh" and G. clavisporum were more common in soils of mainland plots, while spores of Glomus "small brown" and Acaulospora mellea were more abundant in soils of island plots. None of these common AMF species showed significant associations with soil chemistry or plant diversity. We suggest that the convergence of common species found in AMF spore communities in soils of similar forest sizes was a result of forest fragmentation. Habitat-dependent convergence of AMF spore communities may result in differential survival of tree seedlings regenerating on islands versus mainland.


Assuntos
Biodiversidade , Micorrizas , Microbiologia do Solo , Esporos Fúngicos/fisiologia , Árvores , Análise de Variância , Geografia , Panamá , Dinâmica Populacional , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA