Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Microorganisms ; 11(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38138012

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) often cause infections with high mortality rates. Antimicrobial peptides are a source of molecules for developing antimicrobials; one such peptide is melittin, a fraction from the venom of the Apis mellifera bee. This study aimed to evaluate the antibacterial and antibiofilm activities of melittin and its association with oxacillin (mel+oxa) against MRSA isolates, and to investigate the mechanisms of action of the treatments on MRSA. Minimum inhibitory concentrations (MICs) were determined, and synergistic effects of melittin with oxacillin and cephalothin were assessed. Antibiofilm and cytotoxic activities, as well as their impact on the cell membrane, were evaluated for melittin, oxacillin, and mel+oxa. Proteomics evaluated the effects of the treatments on MRSA. Melittin mean MICs for MRSA was 4.7 µg/mL and 12 µg/mL for oxacillin. Mel+oxa exhibited synergistic effects, reducing biofilm formation, and causing leakage of proteins, nucleic acids, potassium, and phosphate ions, indicating action on cell membrane. Melittin and mel+oxa, at MIC values, did not induce hemolysis and apoptosis in HaCaT cells. The treatments resulted in differential expression of proteins associated with protein synthesis and energy metabolism. Mel+oxa demonstrated antibacterial activity against MRSA, suggesting a potential as a candidate for the development of new antibacterial agents against MRSA.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36118843

RESUMO

Background: Natural products represent important sources of antimicrobial compounds. Propolis and compounds from essential oils comprise good examples of such substances because of their inhibitory effects on bacterial spores, including bee pathogens. Methods: Ethanol extracts of propolis (EEP) from Apis mellifera were prepared using different methods: double ultrasonication, double maceration and maceration associated with ultrasonication. Together with the antimicrobial peptides nisin and melittin, and compounds present in the essential oils of clove (Syzygium aromaticum) and cinnamon (Cinnamomum zeylanicum), assays were carried out on one Bacillus subtilis isolate and Paenibacillus alvei (ATCC 6344) against vegetative and sporulated forms, using the resazurin microtiter assay. Synergism with all the antimicrobials in association with tetracycline was verified by the time-kill curve method. Potassium and phosphate efflux, release of proteins and nucleic acids were investigated. Results: EEPs showed the same MIC, 156.25 µg/mL against B. subtilis and 78.12 µg/mL against P. alvei. The peptides showed better activities against B. subtilis (MIC of 12 µg/mL for melittin and 37.50 µg/mL for nisin). Antimicrobials showed similar inhibitory effects, but cinnamaldehyde (39.06 µg/mL) showed the best action against P. alvei. Melittin and nisin showed the greatest capacity to reduce spores, regarding B. subtilis there was a 100% reduction at 6.25 and 0.78 µg/mL, respectively. Concerning P. alvei, the reduction was 93 and 98% at concentrations of 80 µg/mL of melittin and 15 µg/mL of nisin. EEPs showed the highest effects on the protein release against B. subtilis and P. alvei. Nucleic acid release, phosphate and potassium efflux assays indicated bacterial cell membrane damage. Synergism between antimicrobials and tetracycline was demonstrated against both bacteria. Conclusion: All antimicrobials tested showed antibacterial activities against vegetative and sporulated forms of P. alvei and B. subtilis, especially nisin and melittin. Synergism with tetracycline and damage on bacterial cell membrane also occurred.

3.
J. venom. anim. toxins incl. trop. dis ; 28: e20220025, 2022. tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1395803

RESUMO

Background: Natural products represent important sources of antimicrobial compounds. Propolis and compounds from essential oils comprise good examples of such substances because of their inhibitory effects on bacterial spores, including bee pathogens. Methods: Ethanol extracts of propolis (EEP) from Apis mellifera were prepared using different methods: double ultrasonication, double maceration and maceration associated with ultrasonication. Together with the antimicrobial peptides nisin and melittin, and compounds present in the essential oils of clove (Syzygium aromaticum) and cinnamon (Cinnamomum zeylanicum), assays were carried out on one Bacillus subtilis isolate and Paenibacillus alvei (ATCC 6344) against vegetative and sporulated forms, using the resazurin microtiter assay. Synergism with all the antimicrobials in association with tetracycline was verified by the time-kill curve method. Potassium and phosphate efflux, release of proteins and nucleic acids were investigated. Results: EEPs showed the same MIC, 156.25 µg/mL against B. subtilis and 78.12 µg/mL against P. alvei. The peptides showed better activities against B. subtilis (MIC of 12 µg/ mL for melittin and 37.50 µg/mL for nisin). Antimicrobials showed similar inhibitory effects, but cinnamaldehyde (39.06 µg/mL) showed the best action against P. alvei. Melittin and nisin showed the greatest capacity to reduce spores, regarding B. subtilis there was a 100% reduction at 6.25 and 0.78 µg/mL, respectively. Concerning P. alvei, the reduction was 93 and 98% at concentrations of 80 µg/mL of melittin and 15 µg/ mL of nisin. EEPs showed the highest effects on the protein release against B. subtilis and P. alvei. Nucleic acid release, phosphate and potassium efflux assays indicated bacterial cell membrane damage. Synergism between antimicrobials and tetracycline was demonstrated against both bacteria. Conclusion: All antimicrobials tested showed antibacterial activities against vegetative and sporulated forms of P. alvei and B. subtilis, especially nisin and melittin. Synergism with tetracycline and damage on bacterial cell membrane also occurred.(AU)


Assuntos
Própole/análise , Abelhas/imunologia , Óleos Voláteis/análise , Meliteno/análise , Antibacterianos/farmacologia , Nisina/análise , Bacillus subtilis/imunologia , Paenibacillus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA