Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(15): e34813, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39157401

RESUMO

In this study, a kinetic model of the heterogeneous photocatalytic degradation of acetaminophen and its main transformation products is presented. Kinetic photocatalytic modeling and photon absorption rate modeling were included. Monte Carlo method was used to model the photon absorption process. Experiments were carried out in a reactor operated in batch mode and TiO2 nanotubes were used as photocatalyst irradiated with 254 nm UVC. Kinetic parameters were estimated from the experiments data by applying a non-linear regression procedure. Intrinsic expressions to the kinetics of acetaminophen degradation and its main transformation products were derived. Model, kinetics and photon absorption formulations and parameters proved to be affordable for describing the photocatalytic degradation of acetaminophen, but improvements should be done for better description of formation and oxidation kinetics of main transformation products. The model should be tested with other pharmaceuticals and emergent pollutants to calibrate it and evaluate its applicability in a wide range of compounds.

2.
Bioengineering (Basel) ; 10(3)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36978769

RESUMO

In this study, graphite, graphene, and hydrophilic-treated graphene electrodes were evaluated in a dual-chamber microbial fuel cell (DC-MFC). Free-oxygen conditions were promoted in anodic and cathodic chambers. Hydrochloric acid at 0.1 M and pH 1.1 was used as a catholyte, in addition to deionized water in the cathodic chamber. Domestic wastewater was used as a substrate, and a DuPontTM Nafion 117 membrane was used as a proton exchange membrane. The maximum power density of 32.07 mW·m-2 was obtained using hydrophilic-treated graphene electrodes and hydrochloric acid as catholyte. This power density was 1.4-fold and 32-fold greater than that of graphene (22.15 mW·m-2) and graphite (1.02 mW·m-2), respectively, under the same operational conditions. In addition, the maximum organic matter removal efficiencies of 69.8% and 75.5% were obtained using hydrophilic-treated graphene electrodes, for hydrochloric acid catholyte and deionized water, respectively. Therefore, the results suggest that the use of hydrophilic-treated graphene functioning as electrodes in DC-MFCs, and hydrochloric acid as a catholyte, favored power density when domestic wastewater is degraded. This opens up new possibilities for improving DC-MFC performance through the selection of suitable new electrode materials and catholytes.

3.
Heliyon ; 8(7): e09849, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35855980

RESUMO

Microbial fuel cells (MFCs) are a technology that can be applied to both the wastewater treatment and bioenergy generation. This work discusses the contribution of improvements regarding the configurations, electrode materials, membrane materials, electron transfer mechanisms, and materials cost on the current and future development of MFCs. Analysis of the most recent scientific publications on the field denotes that dual-chamber MFCs configuration offers the greatest potential due to the excellent ability to be adapted to different operating environments. Carbon-based materials show the best performance, biocompatibility of carbon-brush anode favors the formation of the biofilm in a mixed consortium and in wastewater as a substrate resembles the conditions of real scenarios. Carbon-cloth cathode modified with nanotechnology favors the conductive properties of the electrode. Ceramic clay membranes emerge as an interesting low-cost membrane with a proton conductivity of 0.0817 S cm-1, close to that obtained with the Nafion membrane. The use of nanotechnology in the electrodes also enhances electron transfer in MFCs. It increases the active sites at the anode and improves the interface with microorganisms. At the cathode, it favors its catalytic properties and the oxygen reduction reaction. These features together favor MFCs performance through energy production and substrate degradation with values above 2.0 W m-2 and 90% respectively. All the recent advances in MFCs are gradually contributing to enable technological alternatives that, in addition to wastewater treatment, generate energy in a sustainable manner. It is important to continue the research efforts worldwide to make MFCs an available and affordable technology for industry and society.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33806343

RESUMO

Pharmaceuticals enhance our quality of life; consequently, their consumption is growing as a result of the need to treat ageing-related and chronic diseases and changes in the clinical practice. The market revenues also show an historic growth worldwide motivated by the increase on the drug demand. However, this positivism on the market is fogged because the discharge of pharmaceuticals and their metabolites into the environment, including water, also increases due to their inappropriate management, treatment and disposal; now, worldwide, this fact is recognized as an environmental concern and human health risk. Intriguingly, researchers have studied the most effective methods for pharmaceutical removal in wastewater; however, the types of pharmaceuticals investigated in most of these studies do not reflect the most produced and consumed pharmaceuticals on the market. Hence, an attempt was done to analyze the pharmaceutical market, drugs consumption trends and the pharmaceutical research interests worldwide. Notwithstanding, the intensive research work done in different pharmaceutical research fronts such as disposal and fate, environmental impacts and concerns, human health risks, removal, degradation and development of treatment technologies, found that such research is not totally aligned with the market trends and consumption patterns. There are other drivers and interests that promote the pharmaceutical research. Thus, this review is an important contribution to those that are interested not only on the pharmaceutical market and drugs consumption, but also on the links, the drivers and interests that motivate and determine the research work on certain groups of pharmaceuticals on water and wastewater.


Assuntos
Preparações Farmacêuticas , Pesquisa Farmacêutica , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Incidência , Qualidade de Vida , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Água , Poluentes Químicos da Água/análise
5.
Acta Anaesthesiol Scand ; 65(2): 228-235, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33037607

RESUMO

RATIONALE: Cyclic strain may be a determinant of ventilator-induced lung injury. The standard for strain assessment is the computed tomography (CT), which does not allow continuous monitoring and exposes to radiation. Electrical impedance tomography (EIT) is able to monitor changes in regional lung ventilation. In addition, there is a correlation between mechanical deformation of materials and detectable changes in its electrical impedance, making EIT a potential surrogate for cyclic lung strain measured by CT (StrainCT ). OBJECTIVES: To compare the global StrainCT with the change in electrical impedance (ΔZ). METHODS: Acute respiratory distress syndrome patients under mechanical ventilation (VT 6 mL/kg ideal body weight with positive end-expiratory pressure 5 [PEEP 5] and best PEEP according to EIT) underwent whole-lung CT at end-inspiration and end-expiration. Biomechanical analysis was used to construct 3D maps and determine StrainCT at different levels of PEEP. CT and EIT acquisitions were performed simultaneously. Multilevel analysis was employed to determine the causal association between StrainCT and ΔZ. Linear regression models were used to predict the change in lung StrainCT between different PEEP levels based on the change in ΔZ. MAIN RESULTS: StrainCT was positively and independently associated with ΔZ at global level (P < .01). Furthermore, the change in StrainCT (between PEEP 5 and Best PEEP) was accurately predicted by the change in ΔZ (R2 0.855, P < .001 at global level) with a high agreement between predicted and measured StrainCT . CONCLUSIONS: The change in electrical impedance may provide a noninvasive assessment of global cyclic strain, without radiation at bedside.


Assuntos
Pulmão , Tomografia , Impedância Elétrica , Humanos , Pulmão/diagnóstico por imagem , Respiração com Pressão Positiva , Tomografia Computadorizada por Raios X
6.
Heliyon ; 6(2): e03394, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32072068

RESUMO

Several studies have been conducted worldwide to develop effective and affordable methods to degrade pharmaceuticals and their metabolites/intermediates/oxidation products found in surface water, wastewater and drinking water. In this work, acetaminophen and its transformation products were successfully degraded in surface water by electrochemical oxidation using stainless steel electrodes. The effect of pH and current density on the oxidation process was assessed and the oxidation kinetics and mechanisms involved were described. Additionally, the results were compared with those obtained in acetaminophen synthetic solutions. It was found that conducting the electrochemical oxidation at 16.3 mA/cm2 and pH 5, good performance of the process was achieved and not only acetaminophen, but also its transformation products were totally degraded in only 7.5 min; furthermore, small number of transformation products were generated. On the other hand, degradation rates of acetaminophen and its transformation products in surface water were much faster (more than 2.5 times) and the reaction times much shorter (more than 4.0 times) than in synthetic solutions at all current densities and pH values evaluated. At pH 3 and pH 5, greater soluble chlorine formation due to the higher HCl amount used to acidify the surface water solutions could enhance the degradation rates of acetaminophen and its transformation products. However, constituents of surface water (ions and solids) could also have an important role on the oxidation process because at pH 9 (non-acidified solutions) the degradation rates were also much greater and the reaction times were much shorter in surface water than in acetaminophen synthetic solutions.

7.
Environ Eng Sci ; 35(11): 1248-1254, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30479471

RESUMO

Paracetamol and its toxic transformation products have been found in surface water, wastewater, and drinking water. Effective methods to degrade these products must be found to reduce their detrimental effects on microorganisms in aquatic systems and minimize the concern on human health. Thus, this study looked into the electrochemical oxidation of paracetamol and its oxidation products on surface water, and results were compared with those of paracetamol synthetic solution oxidation. Degradation of paracetamol was conducted using a stainless steel electrode cell, a pH of 3, and direct current densities of 5.7 mA/cm2 (6 V) and 7.6 mA/cm2 (12 V). For both current densities applied, the pharmaceutical and its oxidation products observed by high-performance liquid chromatography with diode-array detection (HPLC-DAD) at 254 nm were totally degraded. Faster degradation of paracetamol was observed at a higher current density. Indeed, 95% of paracetamol was oxidized in only 15 min at the 7.6 mA/cm2 current density. In comparison to the paracetamol synthetic solution's oxidation, degradation of paracetamol was faster in the surface water than the synthetic solution, at 5.7 mA/cm2. Nevertheless, at 7.6 mA/cm2, total degradation of paracetamol in surface water was delayed up to 40 min, versus 7.5 min in the synthetic solution. Three oxidation products, observed by HPLC-DAD at 254 nm, were fully oxidized. In comparison with the paracetamol synthetic solution, degradation of the oxidation products in surface water was faster than in synthetic solutions for both current densities. Furthermore, the 7.6 mA/cm2 current density resulted in faster degradation of oxidation products. Results obtained from this work are promising for practical applications because short reaction times and low current densities are needed for degradation of paracetamol and its oxidation products. These densities can be potentially supplied by photovoltaic cells.

8.
Artigo em Inglês | MEDLINE | ID: mdl-30105075

RESUMO

Current antiobesity and antidiabetic tools have been insufficient to curb these diseases and frequently cause side effects; therefore, new pancreatic lipase and α-glucosidase inhibitors could be excellent aids for the prevention and treatment of these diseases. The aim of this study was to identify, quantify, and characterize the chemical compounds with the highest degree of inhibitory activity of these enzymes, contained in a Ludwigia octovalvis hydroalcoholic extract. Chemical purification was performed by liquid-liquid separation and column chromatography. Inhibitory activities were measured in vitro, employing acarbose, orlistat, and a Camellia sinensis hydroalcoholic extract as references. For structural elucidation, Nuclear Magnetic Resonance was carried out, and High Performance Liquid Chromatography was used to quantify the compounds. For α-glucosidases, L. octovalvis hydroalcoholic extract and its ethyl acetate fraction showed half-maximal Inhibitory Concentration (IC50) values of 700 and 250 µg/mL, for lipase, 480 and 718 µg/mL, while C. sinensis showed 260 and 587 µg/mL. The most active compounds were identified as ethyl gallate (1, IC50 832 µM) and gallic acid (2, IC50 969 µM); both displayed competitive inhibition of α-glucosidases and isoorientin (3, IC50 201 µM), which displayed uncompetitive inhibition of lipase. These data could be useful in the development of a novel phytopharmaceutical drug.

9.
J Air Waste Manag Assoc ; 67(9): 958-972, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28379119

RESUMO

Off-road vehicles used in construction and agricultural activities can contribute substantially to emissions of gaseous pollutants and can be a major source of submicrometer carbonaceous particles in many parts of the world. However, there have been relatively few efforts in quantifying the emission factors (EFs) and for estimating the potential emission reduction benefits using emission control technologies for these vehicles. This study characterized the black carbon (BC) component of particulate matter and NOx, CO, and CO2 EFs of selected diesel-powered off-road mobile sources in Mexico under real-world operating conditions using on-board portable emissions measurements systems (PEMS). The vehicles sampled included two backhoes, one tractor, a crane, an excavator, two front loaders, two bulldozers, an air compressor, and a power generator used in the construction and agricultural activities. For a selected number of these vehicles the emissions were further characterized with wall-flow diesel particle filters (DPFs) and partial-flow DPFs (p-DPFs) installed. Fuel-based EFs presented less variability than time-based emission rates, particularly for the BC. Average baseline EFs in working conditions for BC, NOx, and CO ranged from 0.04 to 5.7, from 12.6 to 81.8, and from 7.9 to 285.7 g/kg-fuel, respectively, and a high dependency by operation mode and by vehicle type was observed. Measurement-base frequency distributions of EFs by operation mode are proposed as an alternative method for characterizing the variability of off-road vehicles emissions under real-world conditions. Mass-based reductions for black carbon EFs were substantially large (above 99%) when DPFs were installed and the vehicles were idling, and the reductions were moderate (in the 20-60% range) for p-DPFs in working operating conditions. The observed high variability in measured EFs also indicates the need for detailed vehicle operation data for accurately estimating emissions from off-road vehicles in emissions inventories. IMPLICATIONS: Measurements of off-road vehicles used in construction and agricultural activities in Mexico using on-board portable emissions measurements systems (PEMS) showed that these vehicles can be major sources of black carbon and NOX. Emission factors varied significantly under real-world operating conditions, suggesting the need for detailed vehicle operation data for accurately estimating emissions inventories. Tests conducted in a selected number of sampled vehicles indicated that diesel particle filters (DPFs) are an effective technology for control of diesel particulate emissions and can provide potentially large emissions reduction in Mexico if widely implemented.


Assuntos
Poluentes Atmosféricos/análise , Veículos Off-Road , Fuligem/análise , Emissões de Veículos/análise , Dióxido de Carbono/análise , Monóxido de Carbono/análise , Monitoramento Ambiental/métodos , México , Óxidos de Nitrogênio/análise
10.
J Ethnopharmacol ; 185: 1-8, 2016 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26970570

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tecoma stans is traditionally used by several ethnical groups in Mexico and Central America to treat diabetes. This species is mentioned in the majority of the ethnopharmacological studies compiled in Mexico focused in medicinal plants used as anti-diabetic treatment. AIM OF THE STUDY: Recently, this plant was found to display a high level of pancreatic lipase inhibitory activity, in addition to the several action mechanisms already described. Here we show the phytochemical and in vitro pharmacological characterization of some of the compounds responsible for the antilipase activity. MATERIALS AND METHODS: Starting with a hydroalcoholic extract, fractions were obtained by liquid-liquid separation and successive processes of column chromatography purifications. Lipase inhibitory activity was measured employing a spectrophotometric analysis. For structural elucidation (1)H and (13)C NMR experiments were used. HPLC was used to quantify and confirm the identity of the bioactive compounds. RESULTS: Bio-guided chemical purification of the hydroalcoholic extract produced an organic fraction (ethyl acetate, TsEA), flavone fractions (TsC1F13), (TsC1F15), (TsC1F16) and isolated compounds (chrysoeriol, apigenin, luteolin, and verbascoside) with the capability to inhibit the activity of pancreatic lipase. The most active fraction (TsC2F6B) was constituted by a mixture of Chrysoeriol (5,7-dihydroxy-2-[4-hydroxy-3-methoxyphenyl]chromen-4-one, 96% ) and Apigenin (4%). This flavone mixture displayed a percentage of inhibition of 85% when it was eavaluated at 0.25mg/mL. Luteolin and chrysoeriol produced a noncompetitive and mixed inhibition with values of IC50=63 and 158µM respectively. The content of chrysoeriol was also quantified in the hydroalcoholic extract (TsHAE) and organic fraction (TsEA) as 1% and 7% respectively. All of this confirms that high proportion of both flavones produce an increase of the biological activity due to they show the highest inhibition of lipase enzyme in a concentration dependant way. CONCLUSIONS: These results evidence that the medicinal use of T. stans could be in part because of its lipase inhibitory activity allowing to adapt the administration of this plant before meals. Also this data could help to develop a novel phytopharmaceutical drug (standardized in luteolin, chrysoeriol, and apigenin) auxiliary for the Type 2 Diabetes mellitus.


Assuntos
Bignoniaceae/química , Flavonas/farmacologia , Lipase/antagonistas & inibidores , Polifenóis/farmacologia , Flavonas/química , Concentração Inibidora 50 , Estrutura Molecular , Polifenóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA