Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genet Mol Res ; 16(1)2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28198502

RESUMO

We investigated the extraction of Toona sinensis fruit proteins and preliminarily characterized their physicochemical properties. The results showed that optimal extraction occurred under conditions of pH 10.5, a duration of 40 min, a liquid-to-solid ratio of 25:1, and a temperature of 40°C by an orthogonal design using T. sinensis fruit protein as the index and single factor. The total nitrogen content was 13.8 g/100 g and included 17 different amino acids. The glutamate level was highest at 35.37%, followed by arginine at 15.31%. The isoelectric point of T. sinensis fruit protein was between 6.8 and 10.0 with a typical absorption peak by infrared chromatography. Three protein bands were analyzed using SDS-polyacrylamide gel electrophoresis, with relative molecular weights of 55, 51, and 22 kDa. This study provides a theoretical basis for the comprehensive utilization of T. sinensis fruit by further investigating the biological activity of its proteins.


Assuntos
Frutas/química , Meliaceae/química , Extratos Vegetais/química , Proteínas de Plantas/química , Proteômica/métodos
2.
Genet Mol Res ; 15(3)2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27525923

RESUMO

Eruca vesicaria subsp sativa is one of the most tolerant Cruciferae species to drought, and dehydration-responsive element-binding protein 2A (DREB2A) is involved in responses to salinity, heat, and particularly drought. In this study, a gene encoding EvDREB2A was cloned and characterized in E. vesicaria subsp sativa. The full-length EvDREB2A cDNA sequence contained a 388-bp 5'-untranslated region (UTR), a 348-bp 3'-UTR, and a 1002-bp open reading frame that encoded 334 amino acid residues. The theoretical isoelectric point of the EvDREB2A protein was 4.80 and the molecular weight was 37.64 kDa. The genomic sequence of EvDREB2A contained no introns. Analysis using SMART indicated that EvDREB2A contains a conserved AP2 domain, similar to other plant DREBs. Phylogenetic analysis revealed that EvDREB2A and DREB2As from Brassica rapa, Eutrema salsugineum, Arabidopsis thaliana, Arabidopsis lyrata, and Arachis hypogaea formed a small subgroup, which clustered with DREB2Bs from A. lyrata, A. thaliana, Camelina sativa, and B. rapa to form a larger subgroup. EvDREB2A is most closely related to B. rapa DREB2A, followed by DREB2As from E. salsugineum, A. thaliana, A. hypogaea, and A. lyrata. A quantitative real-time polymerase chain reaction indicated that EvDREB2A expression was highest in the leaves, followed by the roots and hypocotyls, and was lowest in the flower buds. EvDREB2A could be used to improve drought tolerance in crops.


Assuntos
Brassicaceae/genética , Proteínas de Plantas/genética , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Proteínas de Plantas/química , Raízes de Plantas/genética , Domínios e Motivos de Interação entre Proteínas , Análise de Sequência de DNA
3.
Genet Mol Res ; 14(4): 18121-30, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26782459

RESUMO

Nicotianamine (NA) is a ubiquitous metabolite in plants that bind heavy metals, is crucial for metal homeostasis, and is also an important metal chelator that facilitates long-distance metal transport and sequestration. NA synthesis is catalyzed by the enzyme nicotianamine synthase (NAS). Eruca vesicaria subsp sativa is highly tolerant to Ni, Pb, and Zn. In this study, a gene encoding EvNAS was cloned and characterized in E. vesicaria subsp sativa. The full-length EvNAS cDNA sequence contained a 111-bp 5'-untranslated region (UTR), a 155-bp 3'-UTR, and a 966-bp open reading frame encoding 322-amino acid residues. The EvNAS genomic sequence contained no introns, which is similar to previously reported NAS genes. The deduced translation of EvNAS contained a well-conserved NAS domain (1-279 amino acids) and an LIKI-CGEAEG box identical to some Brassica NAS and to the LIRL-box in most plant NAS, which is essential for DNA binding. Phylogenetic analysis indicated that EvNAS was most closely related to Brassica rapa NAS3 within the Cruciferae, followed by Thlaspi NAS1, Camelina NAS3, and Arabidopsis NAS3. A reverse transcription-polymerase chain reaction indicated that EvNAS expression was greatest in the leaves, followed by the flower buds and hypocotyls. EvNAS was moderately expressed in the roots.


Assuntos
Alquil e Aril Transferases/genética , Sequência de Aminoácidos/genética , Brassicaceae/enzimologia , Filogenia , Alquil e Aril Transferases/biossíntese , Clonagem Molecular , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Folhas de Planta/genética , Raízes de Plantas
4.
Genet Mol Res ; 14(4): 18302-14, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26782478

RESUMO

ADP-glucose pyrophosphorylase (ADPGlcPPase) controls the first committed step of starch synthesis by catalyzing the biosynthesis of ADP-glucose from glucose-phosphate and ATP. It is a tetrameric protein consisting of two small and two large subunits. The small subunits have a catalytic function, while the large subunits regulate the enzyme activity. Cyperus esculentus (yellow nutsedge) is a perennial C4 plant grown from rhizomes and tubers. Previous studies on yellow nutsedge have mostly focused on the morphology and cultivation of tubers, their application in food, and biochemical analyses of the tubers. In this study, the gene encoding the ADPGlcPPase small subunit (CeAGPS) in yellow nutsedge was cloned and characterized. The full-length CeAGPS cDNA sequence contained an 81-bp 5'-untranslated region (UTR), a 188-bp 3'-UTR, and a 1539-bp open reading frame encoding 512-amino acid residues. The genomic sequence of CeAGPS comprises a nine exon-eight intron structure similar to the previously reported cotton and Arabidopsis thaliana AGPS genes. The deduced translation product of the CeAGPS gene contained a well-conserved catalytic domain and regulatory elements typical of plant AGPS. Reverse transcriptase polymerase chain reaction amplification of the target gene in various plant parts using gene-specific primers indicated that the expression of CeAGPS was most abundant in the tuber, and relatively lower in nutsedge roots.


Assuntos
Clonagem Molecular , Cyperus/genética , Glucose-1-Fosfato Adenililtransferase/genética , Subunidades Proteicas/genética , Sequência de Aminoácidos , Sequência de Bases , Cyperus/classificação , Cyperus/metabolismo , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas , Glucose-1-Fosfato Adenililtransferase/química , Glucose-1-Fosfato Adenililtransferase/metabolismo , Especificidade de Órgãos/genética , Filogenia , Subunidades Proteicas/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA