Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 107(2-1): 024104, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932526

RESUMO

We consider two-species random sequential adsorption (RSA) in which species A and B adsorb randomly on a lattice with the restriction that opposite species cannot occupy nearest-neighbor sites. When the probability x_{A} of choosing an A particle for an adsorption trial reaches a critical value 0.626441(1), the A species percolates and/or the blocked sites X (those with at least one A and one B nearest neighbor) percolate. Analysis of the size-distribution exponent τ, the wrapping probabilities, and the excess cluster number shows that the percolation transition is consistent with that of ordinary percolation. We obtain an exact result for the low x_{B}=1-x_{A} jamming behavior: θ_{A}=1-x_{B}+b_{2}x_{B}^{2}+O(x_{B}^{3}), Î¸_{B}=x_{B}/(z+1)+O(x_{B}^{2}) for a z-coordinated lattice, where θ_{A} and θ_{B} are, respectively, the saturation coverages of species A and B. We also show how differences between wrapping probabilities of A and X clusters, as well as differences in the number of A and X clusters, can be used to find the percolation transition point accurately.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(5 Pt 1): 051921, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21230514

RESUMO

By means of numerical simulations and epidemic analysis, the transition point of the stochastic asynchronous susceptible-infected-recovered model on a square lattice is found to be c0=0.1765005(10), where c is the probability a chosen infected site spontaneously recovers rather than tries to infect one neighbor. This point corresponds to an infection/recovery rate of λ(c)=(1-c0)/c0=4.665 71(3) and a net transmissibility of (1-c0)/(1+3c0)=0.538 410(2), which falls between the rigorous bounds of the site and bond thresholds. The critical behavior of the model is consistent with the two-dimensional percolation universality class, but local growth probabilities differ from those of dynamic percolation cluster growth, as is demonstrated explicitly.


Assuntos
Infecções/epidemiologia , Modelos Biológicos , Análise por Conglomerados , Suscetibilidade a Doenças , Infecções/transmissão , Permeabilidade , Probabilidade , Processos Estocásticos , Fatores de Tempo
3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(1 Pt 2): 016120, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15697671

RESUMO

We present a kinetic Monte Carlo study of the dynamical response of a Ziff-Gulari-Barshad model for CO oxidation with CO desorption to periodic variation of the CO pressure. We use a square-wave periodic pressure variation with parameters that can be tuned to enhance the catalytic activity. We produce evidence that, below a critical value of the desorption rate, the driven system undergoes a dynamic phase transition between a CO2 productive phase and a nonproductive one at a critical value of the period and waveform of the pressure oscillation. At the dynamic phase transition the period-averaged CO2 production rate is significantly increased and can be used as a dynamic order parameter. We perform a finite-size scaling analysis that indicates the existence of power-law singularities for the order parameter and its fluctuations, yielding estimated critical exponent ratios beta/nu approximately 0.12 and gamma/nu approximately 1.77. These exponent ratios, together with theoretical symmetry arguments and numerical data for the fourth-order cumulant associated with the transition, give reasonable support for the hypothesis that the observed nonequilibrium dynamic phase transition is in the same universality class as the two-dimensional equilibrium Ising model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA