Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0292076, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38166042

RESUMO

Extreme weather events, such as severe droughts, pose a threat to the sustainability of beef cattle by limiting the growth and development of forage plants and reducing the available pasture for animals. Thus, the search for forage species that are more tolerant and adapted to soil water deficit conditions is an important strategy to improve food supply. In this study, we propose utilizing the mathematical concept of the Manhattan distance to assess the variations in the morphological variables of tropical forage grasses under water-limited conditions. This study aimed to select genotypes of tropical forage grasses under different water stress levels (moderate or severe) at this distance and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). Nine varieties from five species were examined. Forage grasses were grown in 12-L pots under three soil irrigation regimes [100% pot capacity-PC (well-irrigated control), 60% PC (moderate drought stress), and 25% PC (severe drought stress)] with four replicates. Drought stress treatments were applied for 25 days during the forage grass tillering and stalk elongation phases. After exposure to drought stress, the growth and morphological traits of forage plants were evaluated. The results show that the use of the Manhattan distance combined with TOPSIS helps in the genotypic selection of more stable tropical forage grass varieties when comparing plants exposed to moderate and severe drought conditions in relation to the nonstressful environment (control). The 'ADR 300', 'Pojuca', 'Marandu', and 'Xaraés' varieties show greater stability when grown in a greenhouse and subjected to water stress environments. The selected forage varieties can be used as parents in plant breeding programs, allowing us to obtain new drought-resistant genotypes.


Assuntos
Desidratação , Poaceae , Melhoramento Vegetal , Genótipo , Solo , Secas
2.
Sci Rep ; 14(1): 2159, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272955

RESUMO

The use of hydrogels helpsthe production of plants in drought-stress environments. Thus, this work evaluated using different hydrogels to minimize drought stress in soybean cultivation. The treatments employed two different hydrogels, one already commercialized and the other produced with cashew gum (Anacardium occidentale), five levels (0, 30, 60, 120, and 240 mg pot-1) of the hydrogels, and two levels of drought stress in sandy soil. The growth and yield of soybeans and the levels of macro- and micronutrients in soybeans were evaluated.growth. The use of CG hydrogel promoted 12% increase in protein content in the seeds in the when soybean plants were subjected to drought stress. The levels of 30 mg pot-1, corresponding to 7.5 kg ha-1, improved the 'morphological and productive parametersof the soybeans. The increasing levels of hydrogel promoted the increase in P, K, Ca, Mg, and Fe and reduced S and Cu on an exponential scale. The use of cashew gum hydrogel increased the K and Ca contents in soybean seeds compared to commercial hydrogel.


Assuntos
Anacardium , Glycine max , Secas , Hidrogéis , Solo
3.
PLoS One ; 18(11): e0289018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37922287

RESUMO

Our working hypothesis was that magnesium (Mg) supplementation modulates plant performance under low water availability and improves drought tolerance in soybean genotypes. Plants of Bônus 8579, M8808 and TMG1180 genotypes were grown under field conditions and subjected to three water stress treatments (control, moderate and severe stress) and three Mg levels [0.9 (low), 1.3 (adequate) and 1.7 cmolc dm-³ (supplementation)]. After 28 days of drought imposition, the growth parameters, osmotic potential, relative water content, leaf succulence, Mg content and photosynthetic pigments were assessed. In general, drought drastically decreased the growth in all genotypes, and the reductions were intensified from moderate to severe stress. Under adequate Mg supply, TMG1180 was the most drought-tolerant genotype among the soybean plants, but Mg supplementation did not improve its tolerance. Conversely, although the M8808 genotype displayed inexpressive responses to drought under adequate Mg, the Mg-supplemented plants were found to have surprisingly better growth performance under stress compared to Bônus 8579 and TMG1180, irrespective of drought regime. The improved growth of high Mg-treated M8808-stressed plants correlated with low osmotic potential and increased relative water content, as well as shoot Mg accumulation, resulting in increased photosynthetic pigments and culminating in the highest drought tolerance. The results clearly indicate that Mg supplementation is a potential tool for alleviating water stress in M8808 soybean plants. Our findings suggest that the enhanced Mg-induced plant acclimation resulted from increased water content in plant tissues and strategic regulation of Mg content and photosynthetic pigments.


Assuntos
Glycine max , Magnésio , Desidratação , Secas , Suplementos Nutricionais
4.
Sci Rep ; 13(1): 16040, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749306

RESUMO

Silicon (Si) fertilization is widely recognized to improve the development of crops, especially in tropical soils and cultivation under dryland management. Herein, our working hypothesis was that Si stoichiometry favors the efficient use of carbon (C), nitrogen (N), and phosphorus (P) in sugarcane plants. Therefore, a field experiment was carried out using a 3 × 3 factorial scheme consisting of three cultivars (RB92579, RB021754 and RB036066) and three forms of Si application (control without Si; sodium silicate spray at 40 mmol L-1 in soil during planting; sodium silicate spray at 40 mmol L-1 on leaves at 75 days after emergence). All Si fertilizations altered the elemental C and P stoichiometry and sugarcane yield, but silicon-induced responses varied depending on sugarcane cultivar and application method. The most prominent impacts were found in the leaf Si-sprayed RB92579 cultivar, with a significant increase of 7.0% (11 Mg ha-1) in stalk yield, 9.0% (12 Mg ha-1) in total recoverable sugar, and 20% (4 Mg ha-1) in sugar yield compared to the Si-without control. In conclusion, our findings clearly show that silicon soil and foliar fertilization alter C:N:P stoichiometry by enhancing the efficiency of carbon and phosphorus utilization, leading to improved sugarcane production and industrial quality.


Assuntos
Saccharum , Silício , Grão Comestível , Carbono , Carboidratos da Dieta , Fósforo , Solo , Fertilização
5.
Plants (Basel) ; 12(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37514282

RESUMO

Weed coexistence with an agricultural crop can negatively affect its growth, development, and yield. From this perspective, this study aimed to evaluate weed management strategies and their effect on the agronomic parameters of cowpea cultivation in direct (SPD) and conventional (SPC) planting systems. The experiment was set up in a completely randomized block design with a split-plot arrangement with four replications. The plots received a source of variation referring to the planting systems (direct and conventional planting), and the subplots corresponded to ten weed management strategies (manual hoeing 18 days after planting (DAP); at 36 DAP; at 54 DAP; at 18 and 36 DAP; at 18 and 54 DAP; at 18 and 72 DAP; at 36 and 54 DAP; at 36-72 DAP; at 18, 36, and 54 DAP; and a control with no hoeing). Density and dry mass evaluations of the cowpea plants were performed at harvest (72 DAP) by determining the number of pods per plant, pod length, number of grains per pod, 1000-grain mass, and yield. A total of 28 species distributed in 12 botanical families were identified in the two cultivation systems. The family Poaceae showed the highest frequency, with 25% of the species identified. At the end of the assay, treatment 20 had the highest positive influence and provided significant quantitative gains to the complex of traits related to cowpea production (SPD and hoeing at 18, 36, and 54 DAP). UPGMA cluster analysis and canonical discriminant analysis were performed and allowed a better classification of the evaluated treatments. It was observed that the first two canonical variables explained 90.8% of the total variance contained in the original variables. The use of SPD with weeding at 18, 36, and 54 days after planting provides greater weed control and significant quantitative gains for the complex of characteristics related to cowpea production. The results underscore the importance of choosing the correct cropping system and implementing effective weeding practices to optimize weed control and improve crop performance.

6.
Foods ; 12(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37238756

RESUMO

The cyanobacterium Nostoc sp. contains considerable amounts of protein, iron, and calcium that could mitigate the problems of anemia and malnutrition in humans. However, the nutritional value of the edible species Nostoc sphaericum Vaucher ex Bornet & Flahault, which grows in the Moquegua region, is unknown. Descriptive research was developed, and samples were obtained from the community of Aruntaya, located in the region of Moquegua. Water samples were taken at two different points (spring and reservoir), and samples of the cyanobacteria were taken in the reservoir. The design used was completely randomized, with three repetitions. Sixteen characteristics associated with the water collected at two points were evaluated, and from the nutritional point of view, seven characteristics were evaluated in the collected algae. The physicochemical characteristics were determined using methods established in the Codex Alimentarius. For the morphological characterization at the macroscopic level, it was observed that the seaweed collected was spherical in shape, grayish-green in color, soft to the touch, and palatable. After carrying out the physicochemical and morphological characterization of the collected samples, it was verified that all were of N. sphaericum. When comparing the sixteen characteristics related to water at the two collection sites, highly significant differences (p < 0.01) were observed for most of the variables evaluated. The average data of the characteristics of the algae showed protein values of 28.18 ± 0.33%, carbohydrates of 62.07 ± 0.69%, fat of 0.71 ± 0.02%, fiber of 0.91 ± 0.02%, ash of 7.68 ± 0.10%, and moisture of 0.22 ± 0.01%. Likewise, calcium reported an average value of 377.80 ± 1.43 mg/100 g and iron of 4.76 ± 0.08 mg/100 g. High correlations (positive and negative) were obtained by evaluating seven characteristics associated with the reservoir water where the algae grew in relation to eight nutritional characteristics of the algae. In relation to the nutritional value, the amounts of protein, iron, and calcium exceed the main foods of daily intake. Therefore, it could be considered a nutritious food to combat anemia and malnutrition.

7.
Plants (Basel) ; 12(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36840213

RESUMO

The genus Gossypium has important ethnobotanical and economic value for Amazonian Native Communities (A.N.C.). However, little research has been undertaken on the distribution and genetic diversity of cotton populations maintained in the Peruvian rainforest. This work aims to present the first report on the genetic diversity of Gossypium spp. populations in the A.N.C. of the province of La Convención, Cusco-Peru. The methodology was based on exploring, collecting, identifying, and characterizing the Gossypium populations present in the A.N.C. Twenty-six descriptors were evaluated (9 quantitative and 17 qualitative), and with this information, distribution, correlation, and principal component (PC) analyses were carried out. As a result, plants of two species [G. barbadense L. (44 samples) and G. hirsutum L. (19 samples)], one variety [G. barbadense var. brasiliensis (75 samples)], and three previously unidentified variations (9 samples) were identified. Altogether, 147 samples were collected. G. barbadense var. brasiliensis, which was always found in association with other economic crops within an altitude range of 338 to 1086 m, was the most predominant (51%), distributed in eleven A.N.C. and always in small plots (up to 2 ha). G. barbadense L. was cultivated between 397 and 1137 m of altitude in eight A.N.C. in plots of up to 3 ha in marginal lands. G. hirsutum L., with a smaller distribution (13%), was found between 334 and 497 m of altitude in only three communities; this species is cultivated in marginal areas throughout the year. The variability found for the first two PCs when considering the quantitative and qualitative descriptors was high (74.7%) and moderate (48.2%), respectively. When combining all the descriptors, the analysis showed that the first two PCs accounted for 51.8% of the total variability of the data. The PCs of the two types of data and their combination confirmed that the three populations found were grouped. The nine undefined samples were close to or intermediate between the described ones, showing that these samples may be the result of spontaneous crosses; as such, these samples need to be better evaluated with other tools for further definition. The information obtained shows that in the A.N.C. of Cusco-Peru, there is variability conserved by the inhabitants, who have been able to maintain and use these genotypes, even from their Amazonian indigenous ancestry, and the environment has been able to generate variability among the species, as will be highlighted in future works.

8.
Plants (Basel) ; 11(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36365280

RESUMO

The search for soybean genotypes more adapted to abiotic stress conditions is essential to boost the development and yield of the crop in Brazil and worldwide. In this research, we propose a new approach using the concept of distance (or similarity) in a vector space that can quantify changes in the morphological traits of soybean seedlings exposed to stressful environments. Thus, this study was conducted to select soybean genotypes exposed to stressful environments (saline or drought) using similarity based on Manhattan distance and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method. TOPSIS is a multi-criteria decision method for selecting the best alternative using the concept of distance. The use of TOPSIS is essential because the genotypes are not absolutely similar in both treatments. That is, just the distance measure is not enough to select the best genotype simultaneously in the two stress environments. Drought and saline stresses were induced by exposing seeds of 70 soybean genotypes to -0.20 MPa iso-osmotic solutions with polyethylene glycol-PEG 6000 (119.6 g L-1) or NaCl (2.36 g L-1) for 14 days at 25 °C. The germination rate, seedling length, and seedling dry matter were measured. We showed here how the genotypic stability of soybean plants could be quantified by TOPSIS when comparing drought and salinity conditions to a non-stressful environment (control) and how this method can be employed under different conditions. Based on the TOPSIS method, we can select the best soybean genotypes for environments with multiple abiotic stresses. Among the 70 tested soybean genotypes, RK 6813 RR, ST 777 IPRO, RK 7214 IPRO, TMG 2165 IPRO, 5G 830 RR, 98R35 IPRO, 98R31 IPRO, RK 8317 IPRO, CG 7464 RR, and LG 60177 IPRO are the 10 most stable genotypes under drought and saline stress conditions. Owing to high stability and gains with selection verified for these genotypes under salinity and drought conditions, they can be used as genitors in breeding programs to obtain offspring with higher resistance to antibiotic stresses.

9.
PLoS One ; 17(10): e0274726, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36223386

RESUMO

Genotype × environment (G×E) interaction is an important source of variation in soybean yield, which can significantly influence selection in breeding programs. This study aimed to select superior soybean genotypes for performance and yield stability, from data from multi-environment trials (METs), through GGE biplot analysis that combines the main effects of the genotype (G) plus the genotype-by-environment (G×E) interaction. As well as, through path analysis, determine the direct and indirect influences of yield components on soybean grain yield, as a genotype selection strategy. Eight soybean genotypes from the breeding program of Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) were evaluated in field trials using a randomized block experimental design, in an 8 x 8 factorial scheme with four replications in eight different environments of the Cerrado of Northeastern Brazil during two crop seasons. Phenotypic performance data were measured for the number of days to flowering (NDF), height of first pod insertion (HPI), final plant height (FPH), number of days to maturity (NDM), mass of 100 grains (M100) and grain yield (GY). The results revealed that the variance due to genotype, environment, and G×E interaction was highly significant (P < 0.001) for all traits. The ST820RR, BRS 333RR, BRS SambaíbaRR, M9144RR and M9056RR genotypes exhibited the greatest GY stability in the environments studied. However, only the BRS 333RR genotype, followed by the M9144RR, was able to combine good productive performance with high yield stability. The study also revealed that the HPI and the NDM are traits that should be prioritized in the selection of soybean genotypes due to the direct and indirect effects on the GY.


Assuntos
Glycine max , Melhoramento Vegetal , Grão Comestível/genética , Genótipo , Fenótipo , Melhoramento Vegetal/métodos , Glycine max/genética
10.
Plants (Basel) ; 11(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36145845

RESUMO

Periods of soil water stress have been recurrent in the Cerrado region and have become a growing concern for Brazilian tropical pasture areas. Thus, the search for forage grasses more tolerant to water stress has intensified recently in order to promote more sustainable livestock. In a greenhouse experiment, the degree of water stress tolerance of nine tropical forage grass cultivars was studied under different soil water regimes. The investigation followed a 9 × 3 factorial design in four randomized blocks. Nine cultivars from five species of perennial forage grasses were tested: Urochloa brizantha ('BRS Piatã', 'Marandu', and 'Xaraés'), Panicum maximum ('Aruana', 'Mombaça', and 'Tanzânia'), Pennisetum glaucum ('ADR 300'), Urochloa ruziziensis ('Comum'), and Paspalum atratum ('Pojuca'). These cultivars were grown in pots under three soil water regimes (high soil water regime-HSW (non-stressful condition), middle soil water regime-MSW (moderate water stress), and low soil water regime-LSW (severe water stress)). Plants were exposed to soil water stress for 25 days during the tillering and stalk elongation phases. Twelve tolerance indices, including tolerance index (TOL), mean production (MP), yield stability index (YSI), drought resistance index (DI), stress tolerance index (STI), geometric mean production (GMP), yield index (YI), modified stress tolerance (k1STI and k2STI), stress susceptibility percentage index (SSPI), abiotic tolerance index (ATI), and harmonic mean (HM), were calculated based on shoot biomass production under non-stressful (YP) and stressful (YS) conditions. Soil water stress decreased leaf area, plant height, tillering capacity, root volume, and shoot and root dry matter production in most cultivars, with varying degrees of reduction among tropical forage grasses. Based on shoot biomass production under controlled greenhouse conditions, the most water-stress-tolerant cultivars were P. maximum cv. Mombaça and cv. Tanzânia under the MSW regime and P. maximum cv. Aruana and cv. Mombaça under the LSW regime. P. maximum cv. Mombaça has greater adaptability and stability of shoot biomass production when grown under greenhouse conditions and subjected to soil water stress. Therefore, this forage grass should be tested under field conditions to confirm its forage production potential for cultivation in tropical regions with the occurrence of water stress. The MP, DI, STI, GMP, YI, k2STI, and HM tolerance indices were the most suitable for identifying forage grass cultivars with greater water stress tolerance and a high potential for shoot biomass production under LSW regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA