Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 415(18): 3645-3653, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36477496

RESUMO

As the global population grows and science and technology development evolve, fulfilling basic human needs has been even more linked to technological solutions. In this review, we present an overview of the biosensor market and discuss the factors that make certain countries more competitive than others in terms of technology and innovation and how this is reflected in the trends in publication and patent filling. Additionally, we expose briefly how the COVID-19 pandemic acts as a catalyst for the integration of research and development, business, and innovation sectors to bring solutions and ideas that have been predicted as tendencies for the future.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , Invenções , Arquivamento , Pandemias
2.
J Sep Sci ; 41(14): 2969-2975, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29785728

RESUMO

Ammonium and diphenhydramine are active ingredients commonly found in the same pharmaceutical preparations. We report, for the first time, a sub-minute method for the simultaneous determination of ammonium and diphenhydramine. The method is based on capillary electrophoresis with capacitively coupled contactless conductivity detection. Both analytes can be quantified in a single run (∼80 injections/h) using 30 mmol/L 2-(N-morpholino)ethanesulfonic acid and 15 mmol/L lithium hydroxide (pH 6.0) as background electrolyte. The separation by capillary electrophoresis was achieved on a fused-silica capillary (50 cm total length, 10 cm effective length, and 50 µm inside diameter). The limits of detection were 0.04 and 0.02 mmol/L for ammonium and diphenhydramine, respectively. The proposed method also provided adequate recovery values for spiked samples (100-106 and 97-104% for ammonium and diphenhydramine, respectively). The results obtained with the new capillary electrophoresis method were compared with those of the high-performance liquid chromatography method for diphenhydramine and the Kjeldahl method for ammonium and no statistically significant differences were found (95% confidence level).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA