Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37421024

RESUMO

Devices that integrate field effect transistors into microfluidic channels are becoming increasingly promising in the medical, environmental, and food realms, among other applications. The uniqueness of this type of sensor lies in its ability to reduce the background signals existing in the measurements, which interfere in obtaining good limits of detection for the target analyte. This and other advantages intensify the development of selective new sensors and biosensors with coupling configuration. This review work focused on the main advances in the fabrication and application of field effect transistors integrated into microfluidic devices as a way of identifying the potentialities that exist in these systems when used in chemical and biochemical analyses. The emergence of research on integrated sensors is not a recent study, although more recently the progress of these devices is more accentuated. Among the studies that used integrated sensors with electrical and microfluidic parts, those that investigated protein binding interactions seem to be the ones that expanded the most due, among other things, to the possibility of obtaining several physicochemical parameters involved in protein-protein interactions. Studies in this area have a great possibility of advancing innovations in sensors with electrical and microfluidic interfaces in new designs and applications.

2.
Anal Chim Acta ; 1141: 57-62, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33248662

RESUMO

We report in this communication a ready-to-use fused deposition modeling (FDM) based 3D-printed spectroelectrochemical cell to perform for the first time voltammetry of immobilized microparticles (VIMP) and Raman spectroscopy in situ using acrylonitrile butadiene styrene (ABS) as the filament material for printing. The 3D-printed cell was applied to evaluate solid state electrochemical behavior of tadalafil as a proof-of-concept. Several advantages were achieved in the use of the developed device, such as less manipulation of the working electrode, monitoring the same region of the solid microparticles before and after electrochemical measurements, better control of the laser incidence, low-cost and low-time production. Furthermore, the device was printed in a single-step, without handling to assembly and it has an estimated material cost of approximately 2 $. The use of 3D-printing technology was significantly important to integrate Raman spectroscopic method with VIMP measurements and to support mechanism elucidation and characterization of the compounds with less manipulation of the working electrode, avoiding loss of solid products formed from electrochemical reactions.

3.
Methods Mol Biol ; 1906: 79-85, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30488386

RESUMO

Microchip electrophoresis is a versatile separation technique. Electrochemical detection is suitable to apply to microdevices due to its easy integration to the fabrication process and good sensitivity and selectivity. Here we describe the procedures to prepare Pt band electrodes deposited on glass to couple to polydimethylsiloxane (PDMS) microchips aiming the separation and detection of nitrite using an isolated potentiostat.


Assuntos
Dimetilpolisiloxanos/química , Eletroforese em Microchip/instrumentação , Nitritos/análise , Técnicas Biossensoriais/instrumentação , Eletrodos , Eletroforese em Microchip/métodos , Vidro
4.
J Sep Sci ; 40(10): 2161-2169, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28371452

RESUMO

We investigated a strategy for the chemotaxonomy study of Chrysobalanus icaco Linnaeus (Chrysobalanaceae) based on ultra-high performance liquid chromatography coupled with diode array detection fingerprint in combination with multivariate analysis. Two models using principal component analysis and partial least squares discriminant analysis were developed, and the samples could be successfully classified into two classes: Class 1 (red morphotype) and Class 2 (white and black morphotypes). Furthermore, ultra-high performance liquid chromatography coupled with diode array and electrospray ionization tandem mass spectrometry was used to identify the main compounds responsible for class separation. The partial least squares discriminant analysis model accurately classified the C. icaco samples using an external validation subset with prediction ability of 100% and revealed the existence of two chemotypes. The most important finding obtained in this study is that the three morphotypes distinguished by the mature fruit color (white, red, and black) are not all phytoequivalent to each other.


Assuntos
Chrysobalanaceae/química , Frutas/química , Cromatografia Líquida de Alta Pressão , Chrysobalanaceae/classificação , Análise Multivariada , Espectrometria de Massas por Ionização por Electrospray
5.
J Sep Sci ; 38(21): 3781-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26332708

RESUMO

Focusing on the demand from the food industry for fast and reliable alternative methods to control the quality of food products, we present in this paper a method for amino acid separation and glutamic acid quantification in complex matrices employing capillary electrophoresis with capacitively coupled contactless conductivity detection. We demonstrate by simulation and experimentally the use of organic solvents in sample preparation to prevent peak splitting and increase stacking in capillary electrophoretic separations of amino acids. Additionally, we obtained results for glutamic acid quantification comparable to those obtained via traditional methods used at industrial sites. We tested premium and low-cost samples with large variations in their glutamic acid content, which demonstrated the wide range of applicability of the method presented herein. The results of the proposed capacitively coupled contactless conductivity detection based capillary electrophoresis method agreed with those obtained by an enzymatic detector and ultra high performance liquid chromatography coupled to tandem mass spectrometry, considering a confidence level of 95%.


Assuntos
Eletroforese Capilar/métodos , Ácido Glutâmico/análise , Solventes/química , Artefatos , Alimentos de Soja/análise
6.
Electrophoresis ; 35(16): 2346-52, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24723304

RESUMO

In this work is presented a method for the modification of native PDMS surface in order to improve its applicability as a substrate for microfluidic devices, especially in the analysis of nonpolar analytes. Therefore, poly(ethylene glycol) divinyl ether modified PDMS substrate was obtained by surface modification of native PDMS. The modified substrate was characterized by attenuated total reflectance infrared spectroscopy, water contact angle measurements, and by evaluating the adsorption of rhodamine B and the magnitude of the EOF mobility. The reaction was confirmed by the spectroscopic evaluation. The formation of a well-spread water film over the surface immediately after the modification was an indicative of the modified surface hydrophilicity. This characteristic was maintained for approximately ten days, with a gradual return to a hydrophobic state. Fluorescence assays showed that the nonpolar adsorption property of PDMS was significantly decreased. The EOF mobility obtained was 3.6 × 10(-4) cm(2) V(-1) s(-1) , higher than the typical values found for native PDMS. Due to the better wettability promoted by the modification, the filling of the microchannels with aqueous solutions was facilitated and trapping of air bubbles was not observed.


Assuntos
Dimetilpolisiloxanos/química , Eletroforese em Microchip/instrumentação , Polietilenoglicóis/química , Compostos de Vinila/química , Adsorção , Desenho de Equipamento , Molhabilidade
7.
Electrophoresis ; 31(15): 2487-98, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20665911

RESUMO

The interest in low-cost microfluidic platforms as well as emerging microfabrication techniques has increased considerably over the last years. Toner- and paper-based techniques have appeared as two of the most promising platforms for the production of disposable devices for on-chip applications. This review focuses on recent advances in the fabrication techniques and in the analytical/bioanalytical applications of toner and paper-based devices. The discussion is divided in two parts dealing with (i) toner and (ii) paper devices. Examples of miniaturized devices fabricated by using direct-printing or toner transfer masking in polyester-toner, glass, PDMS as well as conductive platforms as recordable compact disks and printed circuit board are presented. The construction and the use of paper-based devices for off-site diagnosis and bioassays are also described to cover this emerging platform for low-cost diagnostics.


Assuntos
Dispositivos Lab-On-A-Chip , Dispositivos Lab-On-A-Chip/tendências , Microfluídica/instrumentação , Animais , Desenho de Equipamento , Humanos , Dispositivos Lab-On-A-Chip/economia , Procedimentos Analíticos em Microchip/economia , Procedimentos Analíticos em Microchip/tendências , Microfluídica/economia , Microfluídica/tendências , Papel
8.
Electrophoresis ; 31(3): 570-4, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20119967

RESUMO

A method for the determination of ethambutol (EMB), a first-line drug against tuberculosis, based on CE with capacitively coupled contactless conductivity detection is proposed. The separation of EMB and its main product of degradation were achieved in less than 3 min with a resolution of 2.0 using a BGE composed of 50 mmol/L histidine and 30 mmol/L MES, pH 6.30. By raising the pH to 8.03, the analysis time was reduced to 1.0 min, but with a significant loss of resolution (0.7). Using the best separation conditions, linearity of 0.9976 (R(2), five data points), sensitivity of 1.26x10(-4) V min mumol(-1) L, and LOD and quantification of 23.5 and 78.3 mumol/L, respectively, were obtained. Recoveries at four levels of concentration ranged from 95 to 102% and the concentration range studied ranged from 100 to 500 mumol/L. The results obtained for the determination of EMB in pharmaceutical formulations were compared with those obtained by using CE with photometric detection.


Assuntos
Antituberculosos/química , Eletroforese Capilar/métodos , Etambutol/análise , Preparações Farmacêuticas/química , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Sensibilidade e Especificidade , Fatores de Tempo
9.
Lab Chip ; 9(1): 115-21, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19209343

RESUMO

The fabrication process of novel multichannel microfluidic devices with integrated electrodes for amperometric detection is described. Soft-lithography, lift-off and O(2) plasma surface activation sealing techniques were employed for rapid prototyping of cost effective PDMS/glass microchips. The capabilities of the proposed microdevices were demonstrated by the electrooxidation of hydroquinone and N-acetyl-p-aminophenol (APAP) on a Au working electrode at +800 mV and +700 mV, respectively, against a Au pseudo reference electrode, and of thiocyanate on a Cu working electrode at +700 mV against a Ag/AgCl (KCl saturated) reference electrode. Linear response over the range up to 1.0 mmol L(-1) for APAP and up to 4.0 mmol L(-1) for hydroquinone and thiocyanate were verified through calibration curves with correlation coefficients greater than 0.97 (minimum of five data points). The sensitivities for hydroquinone, thiocyanate, and APAP were 28, 19, and 78 microA mol(-1) L, respectively. Under the experimental conditions used, the estimated limits of detection were 0.21, 0.95, and 0.12 mmol L(-1) for hydroquinone, thiocyanate and APAP, respectively. The geometries of the devices were designed to allow fast calibration procedures and reliable results for in-field applications. Exerting a strong influence over the device performance, the sealing process was greatly enhanced by depositing auxiliary TiSiO(2) thin-films. The general performance of the system was verified by amperometric assays of N-acetyl-p-aminophenol standard solutions, and the influences exerted by the present fabrication methods regarding reproducibility and reliability are addressed. The proposed device was successfully applied in the determination of the concentration of APAP in two commercial formulations.

10.
Electrophoresis ; 29(11): 2260-5, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18446805

RESUMO

In this report, we describe the microfabrication and integration of planar electrodes for contactless conductivity detection on polyester-toner (PT) electrophoresis microchips using toner masks. Planar electrodes were fabricated by three simple steps: (i) drawing and laser-printing the electrode geometry on polyester films, (ii) sputtering deposition onto substrates, and (iii) removal of toner layer by a lift-off process. The polyester film with anchored electrodes was integrated to PT electrophoresis microchannels by lamination at 120 degrees C in less than 1 min. The electrodes were designed in an antiparallel configuration with 750 microm width and 750 microm gap between them. The best results were recorded with a frequency of 400 kHz and 10 Vpp using a sinusoidal wave. The analytical performance of the proposed microchip was evaluated by electrophoretic separation of potassium, sodium and lithium in 150 microm wide x 6 microm deep microchannels. Under an electric field of 250 V/cm the analytes were successfully separated in less than 90 s with efficiencies ranging from 7000 to 13,000 plates. The detection limits (S/N = 3) found for K+, Na+, and Li+ were 3.1, 4.3, and 7.2 micromol/L, respectively. Besides the low-cost and instrumental simplicity, the integrated PT chip eliminates the problem of manual alignment and gluing of the electrodes, permitting more robustness and better reproducibility, therefore, more suitable for mass production of electrophoresis microchips.


Assuntos
Eletroforese em Microchip/instrumentação , Análise em Microsséries/instrumentação , Microeletrodos , Condutividade Elétrica , Metais Alcalinos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA