Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 24(5): 108, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29619654

RESUMO

Asparaginases are found in a range of organisms, although those found in cyanobacteria have been little studied, in spite of their great potential for biotechnological application. This study therefore sought to characterize the molecular structure of an L-asparaginase from the cyanobacterium Limnothrix sp. CACIAM 69d, which was isolated from a freshwater Amazonian environment. After homology modeling, model validation was performed using a Ramachandran plot, VERIFY3D, and the RMSD. We also performed molecular docking and dynamics simulations based on binding free-energy analysis. Structural alignment revealed homology with the isoaspartyl peptidase/asparaginase (EcAIII) from Escherichia coli. When compared to the template, our model showed full conservation of the catalytic site. In silico simulations confirmed the interaction of cyanobacterial isoaspartyl peptidase/asparaginase with its substrate, ß-Asp-Leu dipeptide. We also observed that the residues Thr154, Thr187, Gly207, Asp218, and Gly237 were fundamental to protein-ligand complexation. Overall, our results suggest that L-asparaginase from Limnothrix sp. CACIAM 669d has similar properties to E. coli EcAIII asparaginase. Our study opens up new perspectives for the biotechnological exploitation of cyanobacterial asparaginases.


Assuntos
Aminopeptidases/química , Proteínas de Bactérias/química , Cianobactérias/enzimologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
2.
Comput Biol Med ; 43(10): 1334-40, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24034724

RESUMO

Calpain-10 (CAPN10) is a cysteine protease that is activated by intracellular calcium (Ca(2+)) and known to be involved in diseases such as cancer, heart attack, and stroke. A role for the CAPN10 gene in diabetes mellitus type II was recently identified. Hyper activation of the enzyme initiates a series of destructive cycles that can cause irreversible damage to cells. The development of inhibitors may be useful as therapeutic agents for a number of calpainopathies. In this paper, we have used the homology modelling technique to determine the 3D structure of calpain-10 from Homo sapiens. The model of calpain-10 obtained by homology modelling suggests that its active site is conserved among family members and the main interactions are similar to those observed for µ-calpain. Structural analysis revealed that there are small differences in the charge distribution and molecular surface of the enzyme. These differences are probably less dependent on calcium for calpain-10 than they are for µ-calpain. In addition, the ion pair Cys(-)/His(+) formation was observed using of Molecular Dynamics (MD) simulations that were based upon hybrid quantum mechanical/molecular mechanical (QM/MM) approaches. Finally, the binding of the SNJ-1715 inhibitor to calpain-10 was investigated in order to further understand the mechanism of inhibition of calpain-10 by this inhibitor at the molecular level.


Assuntos
Calpaína/química , Tioureia/análogos & derivados , Sequência de Aminoácidos , Calpaína/antagonistas & inibidores , Calpaína/metabolismo , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Reprodutibilidade dos Testes , Alinhamento de Sequência , Eletricidade Estática , Tioureia/química , Tioureia/metabolismo , Tioureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA