Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36234954

RESUMO

Inulinases are enzymes involved in the hydrolysis of inulin, which can be used in the food industry to produce high-fructose syrups and fructo-oligosaccharides. For this purpose, different Aspergillus strains and substrates were tested for inulinase production by solid-state fermentation, among which Aspergillus terreus URM4658 grown on wheat bran showed the highest activity (15.08 U mL-1). The inulinase produced by this strain exhibited optimum activity at 60 °C and pH 4.0. A detailed kinetic/thermodynamic study was performed on the inulin hydrolysis reaction and enzyme thermal inactivation. Inulinase was shown to have a high affinity for substrate evidenced by very-low Michaelis constant values (0.78-2.02 mM), which together with a low activation energy (19.59 kJ mol-1), indicates good enzyme catalytic potential. Moreover, its long half-life (t1/2 = 519.86 min) and very high D-value (1726.94 min) at 60 °C suggested great thermostability, which was confirmed by the thermodynamic parameters of its thermal denaturation, namely the activation energy of thermal denaturation (E*d = 182.18 kJ mol-1) and Gibbs free energy (106.18 ≤ ΔG*d ≤ 111.56 kJ mol-1). These results indicate that A. terreus URM4658 inulinase is a promising and efficient biocatalyst, which could be fruitfully exploited in long-term industrial applications.


Assuntos
Glicosídeo Hidrolases , Inulina , Aspergillus , Fibras na Dieta , Frutose , Termodinâmica
2.
Int J Biol Macromol ; 150: 922-929, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32070737

RESUMO

Pectinex Ultra SP-L, a commercial enzyme preparation with fructosyltransferase activity, was successfully immobilized by covalent binding to Fe3O4-chitosan- magnetic nanoparticles. Immobilization carried out according to a 23-full factorial design where glutaraldehyde concentration, activation time and time of contact between enzyme and support were selected as the independent variables and immobilization yield as the response. The highest immobilization yield (94.84%) was obtained using 3.0% (v/v) glutaraldehyde and activation and contact times of 180 and 30 min, respectively. The immobilized biocatalyst, which showed for both hydrolytic and transfructosylating activities optimum pH and temperature of 7.0 and 60 °C, respectively, retained 70 and 86% of them after 6 cycles of reuse. A kinetic/thermodynamic study focused on thermal inactivation of the immobilized construct indicated high thermostability at temperatures commonly used for fructo-oligosaccharides (FOS) production. Maximum FOS concentration obtained in lab-scale experiments was 101.56 g L-1, with predominant presence of 1-kestose in the reaction mixture. The results obtained in this study suggest that the immobilized-enzyme preparation may be effectively exploited for FOS production and easily recovered from the reaction mixture by action of a magnetic field.


Assuntos
Aspergillus/enzimologia , Quitosana/química , Enzimas Imobilizadas/química , Hexosiltransferases/química , Nanopartículas de Magnetita/química , Oligossacarídeos/biossíntese , Ativação Enzimática , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Glutaral , Hexosiltransferases/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Temperatura , Trissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA