Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetol Metab Syndr ; 15(1): 191, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794521

RESUMO

Noni is a fruit with potential medicinal use preventing elevated blood glucose levels in diabetes mellitus. Its effects have been attributed to an antioxidant property in several other diseases. However, the effects of noni-chronic supplementation on exercise performance in the presence of diabetes conditions are not known. Thirty-two male Wistar rats were used to verify the effects of chronic noni (Morinda citrifolia L) juice administration on glycemia, triglyceride levels, and its relation to physical performance. In addition, it was verified if chronic noni supplementation is safe for clinical use through kidney morphology analysis. In half of the rats, diabetes mellitus (DM) was induced with STZ. All rats were submitted to an incremental workload running test (IWT) until fatigued so that oxygen consumption and performance indexes (exercise time to fatigue and workload) could be analyzed before noni administration. Then, the control and DM groups received a placebo (saline solution) or noni juice (dilution 2:1) at a dose of 2 mL/kg once a day for 60 days. The result was four groups: control + placebo (CP), control + noni (CN), DM + placebo (DMP), and DM + noni (DMN). Our dose was based on in previous study by Nayak et al. (2011) that observed a significant reduction in glycemia with 2 ml/kg of the noni juice without any toxicity effect cited. Groups were then given a third IWT to verify the effect of the noni juice on exercise performance (exercise time to fatigue, workload, maximal oxygen consumption) and glycemia. Twenty-four hours after the third test, all animals were euthanized and blood and kidneys were removed for posterior analysis. The DM induction with STZ impaired the performance by 39%. Noni administration improved the time to fatigue and workload in DM rats beyond reducing hyperglycemia. These results could be associated with an improved energy efficiency promoted by noni ingestion, since the oxygen consumption was not different between the groups, although the exercise was longer in animals with noni ingestion. Our results provided evidence that chronic noni administration causes kidney damage since increased Bowman's space area in the control rats, suggesting glomerular hyperfiltration at the same magnitude as the non-treated DM group.In conclusion, chronic noni ingestion promoted glycemic control and improved the performance in DM rats but caused kidney toxicity.

2.
Front Cell Dev Biol ; 9: 625680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614655

RESUMO

Acute exercise increases the amount of circulating inflammatory cells and cytokines to maintain physiological homeostasis. However, it remains unclear how physical training regulates exercise-induced inflammation and performance. Here, we demonstrate that acute high intensity exercise promotes an inflammatory profile characterized by increased blood IL-6 levels, neutrophil migratory capacity, and leukocyte recruitment to skeletal muscle vessels. Moreover, we found that physical training amplified leukocyte-endothelial cell interaction induced by acute exercise in skeletal muscle vessels and diminished exercise-induced inflammation in skeletal muscle tissue. Furthermore, we verified that disruption of the gp-91 subunit of NADPH-oxidase inhibited exercise-induced leukocyte recruitment on skeletal muscle after training with enhanced exercise time until fatigue. In conclusion, the training was related to physical improvement and immune adaptations. Moreover, reactive oxygen species (ROS) could be related to mechanisms to limit aerobic performance and its absence decreases the inflammatory response elicited by exercise after training.

3.
Exp Physiol ; 100(1): 44-56, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25557730

RESUMO

NEW FINDINGS: What is the central question of this study? Clinical studies suggest that obesity 'protects' against osteoporosis. However, these studies used only bone densitometry and assessed only one bone site, which is insufficient to enable conclusions to be drawn about the response of the whole skeleton. Furthermore, the effects of exercise on bone responses in obesity have not been explored previously. What is the main finding and what is its importance? We show that obesity causes osteopetrosis. Therefore, the classical perspective of 'protective effects of obesity' needs to be reviewed, and exercise is an important tool to avoid these alterations and to maintain the homeostasis of bone. A sedentary lifestyle and obesity induce systemic inflammatory responses. Although the effects of physical inactivity on osseous tissue have been well established, the effects of obesity on bone tissue remain controversial. Furthermore, the effects of physical training on bone tissue responses in the presence of diet-induced obesity are unknown. Our aim was to investigate the effects of obesity and physical training at multiple bone sites in rats. Female Wistar rats were divided into the following four groups: (i) control diet, non-trained (C-NT); (ii) high-refined carbohydrate-containing diet, non-trained (HC-NT); (iii) control diet, trained (C-T); and (iv) high-refined carbohydrate-containing diet, trained (HC-T). At 5 months of age, the rats were submitted to daily exercise for 30 min day(-1). After 13 weeks, blood samples, adipose and skeletal tissues were harvested. Two-way ANOVA was applied to detect differences (significance accepted when P ≤ 0.05). The HC-NT group exhibited increased body mass, adiposity, serum leptin, serum insulin, insulin resistance index and concentrations of tumour necrosis factor-α and interleukin-6. Obese rats (HC-NT) exhibited thickening of nasal bones, trabecular bones in the lumbar vertebrae and long bones in a site-dependent manner. The HC-T group exhibited similar adiposity and inflammatory results. Morphological analysis of the lumbar vertebrae in rats fed the HC diet revealed characteristics of osteopetrosis that were inhibited by exercise. In conclusion, the HC diet induced obesity and inflammatory/hormonal alterations and increased the trabecular bone in a site-dependent manner. However, obesity caused osteopetrosis in the lumbar vertebrae, which could be inhibited by physical training. Although exercise inhibited the development of bone alterations, physical training did not inhibit the HC diet-induced obesity responses.


Assuntos
Remodelação Óssea , Terapia por Exercício , Obesidade/terapia , Osteopetrose/prevenção & controle , Adiposidade , Fatores Etários , Animais , Biomarcadores/sangue , Peso Corporal , Densidade Óssea , Carboidratos da Dieta , Modelos Animais de Doenças , Feminino , Mediadores da Inflamação/sangue , Obesidade/sangue , Obesidade/complicações , Obesidade/fisiopatologia , Osteopetrose/sangue , Osteopetrose/etiologia , Osteopetrose/fisiopatologia , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA