Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 452: 114562, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37394124

RESUMO

The mutant bate-palmas ("claps"; symbol - bapa) mice induced by the mutagenic chemical ENU present motor incoordination and postural alterations. A previous study showed that bapa mice present increased motor/exploratory behaviors during the prepubertal period due to increased striatal tyrosine hydroxylase expression, suggesting striatal dopaminergic system hyperactivity. This study aimed to evaluate the involvement of striatal dopaminergic receptors in the hyperactivity of bapa mice. Male bapa mice and their wild strain (WT) were used. Spontaneous motor behavior was observed in the open-field test, and stereotypy was evaluated after apomorphine administration. The effects of DR1 and DR2 dopaminergic antagonists (SCH-23,390; sulpiride) and the striatal DR1 and D2 receptor gene expression were evaluated. Relative to WT, bapa mice showed: 1) increased general activity for four days; 2) increased rearing and sniffing behavior and decreased immobility after apomorphine; 3) blockage of rearing behavior after the DR2 antagonist but no effect after DR1 antagonist; 4) blockage of sniffing behavior after the DR1 antagonist in bapa and WT mice but no effect after the DR2 antagonist; 5) increased immobility after the DR1 antagonist but no effect after the DR2 antagonist; 6) increased expression of striatal DR1 receptor gene and reduced the DR2 expression gene after apomorphine administration. Bapa mice showed increased activity in open field behavior. The increased rearing behavior induced by apomorphine of bapa mice resulted from the increased gene expression of the DR1 receptor.


Assuntos
Apomorfina , Benzazepinas , Animais , Masculino , Camundongos , Apomorfina/farmacologia , Benzazepinas/farmacologia , Dopamina , Antagonistas de Dopamina/farmacologia , Receptores de Dopamina D1 , Sulpirida/farmacologia
2.
Brain Res ; 1799: 148180, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36463954

RESUMO

Sonic Hedgehog (Shh) signaling plays a critical role during central nervous system (CNS) development, and its dysregulation leads to neurological disorders. Nevertheless, little is known about Shh signaling regulation in the adult brain. Here, we investigated the contribution of DNA methylation on the transcriptional control of Shh signaling pathway members and its basal distribution impact on the brain, as well as its modulation by inflammation. The methylation status of the promoter regions of these members and the transcriptional profile of DNA-modifying enzymes (DNA Methyltransferases - DNMTs and Tet Methylcytosine Dioxygenase - TETs) were investigated in a murine model of neuroinflammation by qPCR. We showed that, in the adult brain, methylation in the CpG promoter regions of the Shh signaling pathway members was critical to determine the endogenous differential transcriptional pattern observed between distinct brain regions. We also found that neuroinflammation differentially modulates gene expression of DNA-modifying enzymes. This study reveals the basal transcriptional profile of DNMTs and TETs enzymes in the CNS and demonstrates the effect of neuroinflammation on the transcriptional control of members of the Shh Signaling pathway in the adult brain.


Assuntos
Proteínas Hedgehog , Doenças Neuroinflamatórias , Camundongos , Animais , Proteínas Hedgehog/metabolismo , Regulação da Expressão Gênica , Sistema Nervoso Central/metabolismo , Epigênese Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA