Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(8): e0088824, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38980033

RESUMO

Aspergillus fumigatus is the primary etiological agent of aspergillosis. Here, we show that the host defense peptide mimetic brilacidin (BRI) can potentiate ibrexafungerp (IBX) against clinical isolates of A. fumigatus. BRI + IBX can inhibit the growth of A. fumigatus voriconazole- and caspofungin-resistant clinical isolates. BRI is a small molecule host defense peptide mimetic that has previously exhibited broad-spectrum immunomodulatory/anti-inflammatory activity against viruses, bacteria, and fungi. In vitro, combination of BRI + IBX plays a fungicidal role, increases the fungal cell permeability, decreases the fungal survival in the presence of A549 epithelial cells, and appears as a promising antifungal therapeutic alternative against A. fumigatus. IMPORTANCE: Invasive fungal infections have a high mortality rate causing more deaths annually than tuberculosis or malaria. Aspergillus fumigatus causes a series of distinct invasive fungal infections have a high mortality rate causing more deaths annually than tuberculosis or malaria. A. fumigatus causes a spectrum of distinct clinical entities named aspergillosis, which the most severe form is the invasive pulmonary aspergillosis. There are few therapeutic options for treating aspergillosis and searching for new antifungal agents against this disease is very important. Here, we present brilacidin (BRI) as a synergizer o fibrexafungerp (IBX) against A. fumigatus. BRI is a small molecule host defense peptide mimetic that has previously exhibited broad-spectrum immunomodulatory/anti-inflammatory activity against bacteria and viruses. We propose the combination of BRI and IBX as a new antifungal combinatorial treatment against aspergillosis.


Assuntos
Antifúngicos , Aspergillus fumigatus , Aspergillus fumigatus/efeitos dos fármacos , Humanos , Antifúngicos/farmacologia , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Células A549 , Peptídeos Antimicrobianos/farmacologia , Farmacorresistência Fúngica/efeitos dos fármacos
2.
mBio ; 15(7): e0103124, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38916308

RESUMO

Cryptococcus neoformans causes cryptococcosis, one of the most prevalent fungal diseases, generally characterized by meningitis. There is a limited and not very effective number of drugs available to combat this disease. In this manuscript, we show the host defense peptide mimetic brilacidin (BRI) as a promising antifungal drug against C. neoformans. BRI can affect the organization of the cell membrane, increasing the fungal cell permeability. We also investigated the effects of BRI against the model system Saccharomyces cerevisiae by analyzing libraries of mutants grown in the presence of BRI. In S. cerevisiae, BRI also affects the cell membrane organization, but in addition the cell wall integrity pathway and calcium metabolism. In vivo experiments show BRI significantly reduces C. neoformans survival inside macrophages and partially clears C. neoformans lung infection in an immunocompetent murine model of invasive pulmonary cryptococcosis. We also observed that BRI interacts with caspofungin (CAS) and amphotericin (AmB), potentiating their mechanism of action against C. neoformans. BRI + CAS affects endocytic movement, calcineurin, and mitogen-activated protein kinases. Our results indicate that BRI is a novel antifungal drug against cryptococcosis. IMPORTANCE: Invasive fungal infections have a high mortality rate causing more deaths annually than tuberculosis or malaria. Cryptococcosis, one of the most prevalent fungal diseases, is generally characterized by meningitis and is mainly caused by two closely related species of basidiomycetous yeasts, Cryptococcus neoformans and Cryptococcus gattii. There are few therapeutic options for treating cryptococcosis, and searching for new antifungal agents against this disease is very important. Here, we present brilacidin (BRI) as a potential antifungal agent against C. neoformans. BRI is a small molecule host defense peptide mimetic that has previously exhibited broad-spectrum immunomodulatory/anti-inflammatory activity against bacteria and viruses. BRI alone was shown to inhibit the growth of C. neoformans, acting as a fungicidal drug, but surprisingly also potentiated the activity of caspofungin (CAS) against this species. We investigated the mechanism of action of BRI and BRI + CAS against C. neoformans. We propose BRI as a new antifungal agent against cryptococcosis.


Assuntos
Antifúngicos , Criptococose , Cryptococcus neoformans , Saccharomyces cerevisiae , Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Animais , Camundongos , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Modelos Animais de Doenças , Macrófagos/microbiologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Testes de Sensibilidade Microbiana , Caspofungina/farmacologia , Feminino , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Anfotericina B/farmacologia
3.
bioRxiv ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38617338

RESUMO

Aspergillus fumigatus is the primary etiological agent of aspergillosis. Here, we show that the host defense peptide mimetic, brilacidin (BRI) can potentiate ibrexafungerp (IBX) against clinical isolates of A. fumigatus. CAS-resistant strains with mutations in fks1 that encodes the 1,3-ß-D-glucan synthase are not IBX-resistant and BRI+IBX can inhibit their growth. The combination of BRI+IBX plays a fungicidal role, increases the fungal cell permeability and decreases the fungal survival in the presence of A549 epithelial cells.

4.
bioRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405873

RESUMO

Sporotrichosis, the cutaneous mycosis most commonly reported in Latin America, is caused by the Sporothrix clinical clade species, including Sporothrix brasiliensis and Sporothrix schenckii sensu stricto. In Brazil, S. brasiliensis represents a vital health threat to humans and domestic animals due to its zoonotic transmission. Itraconazole, terbinafine, and amphotericin B are the most used antifungals for treating sporotrichosis. However, many strains of S. brasiliensis and S. schenckii have shown resistance to these agents, highlighting the importance of finding new therapeutic options. Here, we demonstrate that milteforan, a commercial veterinary product against dog leishmaniasis whose active principle is miltefosine, is a possible therapeutic alternative for the treatment of sporotrichosis, as observed by its fungicidal activity in vitro against different strains of S. brasiliensis and S. schenckii, and by its antifungal activity when used to treat infected epithelial cells and macrophages. Our results suggest milteforan as a possible alternative to treat feline sporotrichosis.

5.
Res Sq ; 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37398048

RESUMO

Aspergillus fumigatus is a saprophytic fungus that can cause a variety of human diseases known as aspergillosis. Mycotoxin gliotoxin (GT) production is important for its virulence and must be tightly regulated to avoid excess production and toxicity to the fungus. GT self-protection by GliT oxidoreductase and GtmA methyltransferase activities is related to the subcellular localization of these enzymes and how GT can be sequestered from the cytoplasm to avoid increased cell damage. Here, we show that GliT:GFP and GtmA:GFP are localized in the cytoplasm and in vacuoles during GT production. Peroxisomes are also required for proper GT production and self-defense. The Mitogen-Activated Protein (MAP) kinase MpkA is essential for GT production and self-protection, interacts physically with GliT and GtmA and it is necessary for their regulation and subsequent presence in the vacuoles. Our work emphasizes the importance of dynamic compartmentalization of cellular events for GT production and self-defense.

6.
Nat Commun ; 14(1): 2052, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045836

RESUMO

Fungal infections cause more than 1.5 million deaths a year. Due to emerging antifungal drug resistance, novel strategies are urgently needed to combat life-threatening fungal diseases. Here, we identify the host defense peptide mimetic, brilacidin (BRI) as a synergizer with caspofungin (CAS) against CAS-sensitive and CAS-resistant isolates of Aspergillus fumigatus, Candida albicans, C. auris, and CAS-intrinsically resistant Cryptococcus neoformans. BRI also potentiates azoles against A. fumigatus and several Mucorales fungi. BRI acts in A. fumigatus by affecting cell wall integrity pathway and cell membrane potential. BRI combined with CAS significantly clears A. fumigatus lung infection in an immunosuppressed murine model of invasive pulmonary aspergillosis. BRI alone also decreases A. fumigatus fungal burden and ablates disease development in a murine model of fungal keratitis. Our results indicate that combinations of BRI and antifungal drugs in clinical use are likely to improve the treatment outcome of aspergillosis and other fungal infections.


Assuntos
Aspergilose , Micoses , Humanos , Camundongos , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Caspofungina/farmacologia , Caspofungina/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Modelos Animais de Doenças , Aspergilose/microbiologia , Micoses/tratamento farmacológico , Aspergillus fumigatus , Candida albicans , Farmacorresistência Fúngica
7.
mBio ; 13(4): e0185022, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35856657

RESUMO

In cystic fibrosis (CF), mucus plaques are formed in the patient's lungs, creating a hypoxic condition and a propitious environment for colonization and persistence of many microorganisms. There is clinical evidence showing that Aspergillus fumigatus can cocolonize CF patients with Pseudomonas aeruginosa, which has been associated with lung function decline. P. aeruginosa produces several compounds with inhibitory and antibiofilm effects against A. fumigatus in vitro; however, little is known about the fungal compounds produced in counterattack. Here, we annotated fungal and bacterial secondary metabolites (SM) produced in mixed biofilms under normoxia and hypoxia conditions. We detected nine SM produced by P. aeruginosa. Phenazines and different analogs of pyoverdin were the main compounds produced by P. aeruginosa, and their secretion levels were increased by the fungal presence. The roles of the two operons responsible for phenazine production (phzA1 and phzA2) were also investigated, and mutants lacking one of those operons were able to produce partial sets of phenazines. We detected a total of 20 SM secreted by A. fumigatus either in monoculture or in coculture with P. aeruginosa. All these compounds were secreted during biofilm formation in either normoxia or hypoxia. However, only eight compounds (demethoxyfumitremorgin C, fumitremorgin, ferrichrome, ferricrocin, triacetylfusigen, gliotoxin, gliotoxin E, and pyripyropene A) were detected during biofilm formation by the coculture of A. fumigatus and P. aeruginosa under normoxia and hypoxia conditions. Overall, we showed how diverse SM secretion is during A. fumigatus and P. aeruginosa mixed culture and how this can affect biofilm formation in normoxia and hypoxia. IMPORTANCE The interaction between Pseudomonas aeruginosa and Aspergillus fumigatus has been well characterized in vitro. In this scenario, the bacterium exerts a strong inhibitory effect against the fungus. However, little is known about the metabolites produced by the fungus to counterattack the bacteria. Our work aimed to annotate secondary metabolites (SM) secreted during coculture between P. aeruginosa and A. fumigatus during biofilm formation in both normoxia and hypoxia. The bacterium produces several different types of phenazines and pyoverdins in response to presence of the fungus. In contrast, we were able to annotate 29 metabolites produced during A. fumigatus biofilm formation, but only 8 compounds were detected during biofilm formation by the coculture of A. fumigatus and P. aeruginosa upon either normoxia or hypoxia. In conclusion, we detected many SM secreted during A. fumigatus and P. aeruginosa biofilm formation. This analysis provides several opportunities to understand the interactions between these two species.


Assuntos
Fibrose Cística , Gliotoxina , Aspergillus fumigatus , Biofilmes , Humanos , Hipóxia , Fenazinas/metabolismo , Fenazinas/farmacologia , Pseudomonas aeruginosa/metabolismo
8.
mBio ; 13(3): e0044722, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420487

RESUMO

Cell responses against antifungals other than resistance have rarely been studied in filamentous fungi, while terms such as tolerance and persistence are well-described for bacteria and increasingly examined in yeast-like organisms. Aspergillus fumigatus is a filamentous fungal pathogen that causes a disease named aspergillosis, for which caspofungin (CAS), a fungistatic drug, is used as a second-line therapy. Some A. fumigatus clinical isolates can survive and grow in CAS concentrations above the minimum effective concentration (MEC), a phenomenon known as "caspofungin paradoxical effect" (CPE). Here, we evaluated the CPE in 67 A. fumigatus clinical isolates by calculating recovery rate (RR) values, where isolates with an RR of ≥0.1 were considered CPE+ while isolates with an RR of <0.1 were classified as CPE-. Conidia produced by three CPE+ clinical isolates, CEA17 (RR = 0.42), Af293 (0.59), and CM7555 (0.38), all showed the ability to grow in high levels of CAS, while all conidia produced by the CPE- isolate IFM61407 (RR = 0.00) showed no evidence of paradoxical growth. Given the importance of the calcium/calcineurin/transcription factor-CrzA pathway in CPE regulation, we also demonstrated that all ΔcrzACEA17 (CPE+) conidia exhibited CPE while 100% of ΔcrzAAf293 (CPE-) did not exhibit CPE. Because all spores derived from an individual strain were phenotypically indistinct with respect to CPE, it is likely that CPE is a genetically encoded adaptive trait that should be considered an antifungal-tolerant phenotype. Because the RR parameter showed that the strength of the CPE was not uniform between strains, we propose that the mechanisms which govern this phenomenon are multifactorial. IMPORTANCE The "Eagle effect," initially described for bacterial species, which reflects the capacity of some strains to growth above the minimum inhibitory concentration (MIC) of specific antimicrobial agents, has been known for more than 70 years. However, its underlying mechanism of action in fungi is not fully understood and its connection with other phenomena such as tolerance or persistence is not clear yet. Here, based on the characterization of the "caspofungin paradoxical effect" in several Aspergillus fumigatus clinical isolates, we demonstrate that all conidia from A. fumigatus CPE+ strains are able to grow in high levels of the drug while all conidia produced by CPE- strains show no evidence of paradoxical growth. This work fills a gap in the understanding of this multifactorial phenomenon by proposing that CPE in A. fumigatus should be considered a tolerant but not persistent phenotype.


Assuntos
Aspergillus fumigatus , Águias , Animais , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Caspofungina/farmacologia , Águias/metabolismo , Equinocandinas/metabolismo , Equinocandinas/farmacologia , Proteínas Fúngicas/metabolismo , Testes de Sensibilidade Microbiana , Esporos Fúngicos/metabolismo
9.
PLoS Genet ; 18(1): e1010001, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007279

RESUMO

Invasive Pulmonary Aspergillosis, which is caused by the filamentous fungus Aspergillus fumigatus, is a life-threatening infection for immunosuppressed patients. Chromatin structure regulation is important for genome stability maintenance and has the potential to drive genome rearrangements and affect virulence and pathogenesis of pathogens. Here, we performed the first A. fumigatus global chromatin profiling of two histone modifications, H3K4me3 and H3K9me3, focusing on the two most investigated A. fumigatus clinical isolates, Af293 and CEA17. In eukaryotes, H3K4me3 is associated with active transcription, while H3K9me3 often marks silent genes, DNA repeats, and transposons. We found that H3K4me3 deposition is similar between the two isolates, while H3K9me3 is more variable and does not always represent transcriptional silencing. Our work uncovered striking differences in the number, locations, and expression of transposable elements between Af293 and CEA17, and the differences are correlated with H3K9me3 modifications and higher genomic variations among strains of Af293 background. Moreover, we further showed that the Af293 strains from different laboratories actually differ in their genome contents and found a frequently lost region in chromosome VIII. For one such Af293 variant, we identified the chromosomal changes and demonstrated their impacts on its secondary metabolites production, growth and virulence. Overall, our findings not only emphasize the influence of genome heterogeneity on A. fumigatus fitness, but also caution about unnoticed chromosomal variations among common laboratory strains.


Assuntos
Aspergillus fumigatus/classificação , Cromossomos Fúngicos/genética , Heterogeneidade Genética , Histonas/metabolismo , Aspergilose Pulmonar/microbiologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/isolamento & purificação , Cromatina , Elementos de DNA Transponíveis , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica de Plantas , Aptidão Genética , Código das Histonas , Humanos , Regiões Promotoras Genéticas , Metabolismo Secundário , Virulência
10.
PLoS Genet ; 18(1): e1009965, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041649

RESUMO

Aspergillus fumigatus causes a range of human and animal diseases collectively known as aspergillosis. A. fumigatus possesses and expresses a range of genetic determinants of virulence, which facilitate colonisation and disease progression, including the secretion of mycotoxins. Gliotoxin (GT) is the best studied A. fumigatus mycotoxin with a wide range of known toxic effects that impair human immune cell function. GT is also highly toxic to A. fumigatus and this fungus has evolved self-protection mechanisms that include (i) the GT efflux pump GliA, (ii) the GT neutralising enzyme GliT, and (iii) the negative regulation of GT biosynthesis by the bis-thiomethyltransferase GtmA. The transcription factor (TF) RglT is the main regulator of GliT and this GT protection mechanism also occurs in the non-GT producing fungus A. nidulans. However, the A. nidulans genome does not encode GtmA and GliA. This work aimed at analysing the transcriptional response to exogenous GT in A. fumigatus and A. nidulans, two distantly related Aspergillus species, and to identify additional components required for GT protection. RNA-sequencing shows a highly different transcriptional response to exogenous GT with the RglT-dependent regulon also significantly differing between A. fumigatus and A. nidulans. However, we were able to observe homologs whose expression pattern was similar in both species (43 RglT-independent and 11 RglT-dependent). Based on this approach, we identified a novel RglT-dependent methyltranferase, MtrA, involved in GT protection. Taking into consideration the occurrence of RglT-independent modulated genes, we screened an A. fumigatus deletion library of 484 transcription factors (TFs) for sensitivity to GT and identified 15 TFs important for GT self-protection. Of these, the TF KojR, which is essential for kojic acid biosynthesis in Aspergillus oryzae, was also essential for virulence and GT biosynthesis in A. fumigatus, and for GT protection in A. fumigatus, A. nidulans, and A. oryzae. KojR regulates rglT, gliT, gliJ expression and sulfur metabolism in Aspergillus species. Together, this study identified conserved components required for GT protection in Aspergillus species.


Assuntos
Aspergillus/crescimento & desenvolvimento , Gliotoxina/farmacologia , Metiltransferases/genética , Fatores de Transcrição/genética , Aspergillus/efeitos dos fármacos , Aspergillus/genética , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus nidulans/efeitos dos fármacos , Aspergillus nidulans/genética , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus oryzae/efeitos dos fármacos , Aspergillus oryzae/genética , Aspergillus oryzae/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Gliotoxina/biossíntese , RNA-Seq
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA