Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cytogenet Genome Res ; 164(1): 33-42, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38402854

RESUMO

INTRODUCTION: Its wide karyotypic variation characterizes the genus Ctenomys, and in Brazil, the genus is distributed in the country's southern, Midwest, and northern regions. Recently, populations of Ctenomys have been found in the Midwest and northern Brazil, with two new lineages named C. sp. "xingu" and C. sp. "central." METHODS: This work combines classical cytogenetic and molecular analyses to provide new chromosomal information on the boliviensis group distributed in northern and Midwestern Brazil. This includes the validation of the karyotype of C. bicolor and C. nattereri and the description of the karyotype of C. sp. "xingu" and C. sp. "central." RESULTS: We found three different karyotypes: 2n = 40 for C. bicolor; 2n = 36 for C. nattereri, and specimens from a locality belonging to C. sp. "central"; 2n = 34 for the lineage C. sp. "xingu" and specimens from a locality belonging to C. sp. "central." Furthermore, GTG banding revealed homologous chromosomes between species/lineages and allowed the identification of the rearrangements that occurred, which proved the occurrence of fissions. CONCLUSION: Considering our results on the variation of 2n in the boliviensis group, we found two possibilities: the first, deduced by parsimony, is that 2n = 36 appeared initially, and two fissions produced gave rise to 2n = 40, and an independent fusion gave rise to 2n = 34 from 2n = 36; moreover, the second explanation is that all karyotypes arose independently.


Assuntos
Cariótipo , Roedores , Animais , Brasil , Roedores/genética , Roedores/classificação , Cariotipagem , Masculino , Bandeamento Cromossômico , Feminino , Cromossomos de Mamíferos/genética , Filogenia
2.
Animals (Basel) ; 12(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36009681

RESUMO

The Neotropical underground rodents of the genus Ctenomys (Rodentia: Ctenomyidae) comprise about 65 species, which harbor the most significant chromosomal variation among mammals (2n = 10 to 2n = 70). Among them, C. minutus stands out with 45 different cytotypes already identified, among which, seven parental ones, named A to G, are parapatrically distributed in the coastal plains of Southern Brazil. Looking for possible causes that led to such extensive karyotype diversification, we performed chromosomal mapping of different repetitive DNAs, including microsatellites and long interspersed element-1 (LINE-1) retrotransposons in the seven parental cytotypes. Although microsatellites were found mainly in the centromeric and telomeric regions of the chromosomes, different patterns occur for each cytotype, thus revealing specific features. Likewise, the LINE-1-like retrotransposons also showed a differential distribution for each cytotype, which may be linked to stochastic loss of LINE-1 in some populations. Here, microsatellite motifs (A)30, (C)30, (CA)15, (CAC)10, (CAG)10, (CGG)10, (GA)15, and (GAG)10 could be mapped to fusion of chromosomes 20/17, fission and inversion in the short arm of chromosome 2, fusion of chromosomes 23/19, and different combinations of centric and tandem fusions of chromosomes 22/24/16. These data provide evidence for a correlation between repetitive genomic content and localization of evolutionary breakpoints and highlight their direct impact in promoting chromosomal rearrangements.

3.
Evolution ; 76(8): 1790-1805, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35794070

RESUMO

Investigations of phenotypic disparity across geography often ignore macroevolutionary processes. As a corollary, the random null expectations to which disparity is compared and interpreted may be unrealistic. We tackle this issue by representing, in geographical space, distinct processes of phenotypic evolution underlying ecological disparity. Under divergent natural selection, assemblages in a given region should have empirical disparity higher than expected under an evolutionarily oriented null model, whereas the opposite may indicate constraints on phenotypic evolution. We gathered phylogenies, biogeographic distributions, and data on the skull morphology of sigmodontine rodents to discover which regions of the Neotropics were more influenced by divergent, neutral, or constrained phenotypic evolution. We found that regions with higher disparity than expected by the evolutionary-oriented null model, in terms of both size and shape, were concentrated in the Atlantic Forest, suggesting a larger role for divergent natural selection there. Phenotypic disparity in the rest of South America, mainly the Amazon basin, northeastern Brazil, and Southern Andes, was constrained-lower than predicted by the evolutionary model. We also demonstrated equivalence between the disparity produced by randomization-based null models and constrained-evolution null models. Therefore, including evolutionary simulations into the null modeling framework used in ecophylogenetics can strengthen inferences on the processes underlying phenotypic evolution.


Assuntos
Evolução Biológica , Roedores , Animais , Brasil , Filogenia , Roedores/genética , Seleção Genética
4.
Sci Rep ; 9(1): 6325, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-31004106

RESUMO

The Candiota coal mine in Rio Grande do Sul (RS) is one of the largest in Brazil. Coal is a fossil fuel that causes environmental impacts from its extraction to combustion due to the release of different agents, such as polycyclic aromatic hydrocarbons (PAH) and heavy metals. Ctenomys torquatus are herbivorous and subterranean rodents that dig tunnels with their paws and teeth and can be exposed to coal through contaminated food. Exposure to pollutants can cause DNA damage and affect different tissues, inducing alterations in the population structure and genetic diversity. Our study aimed to evaluate the effect of exposure to coal and its derivatives on the C. torquatus population and to examine the relationship of coal exposure with variations in absolute telomere length (aTL), global DNA methylation and genotoxicity. Our study showed an inverse correlation between telomere length and coal exposure in addition to an increase in DNA damage. The results indicate that coal and its byproducts can contribute to the alteration of the C. torquatus population structure, as evidenced by a reduction in the number of adults.


Assuntos
Minas de Carvão , Carvão Mineral/efeitos adversos , Dano ao DNA/efeitos dos fármacos , Roedores , Homeostase do Telômero/efeitos dos fármacos , Animais , Humanos , Dinâmica Populacional , Roedores/genética , Roedores/metabolismo
5.
PLoS One ; 10(4): e0122412, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25874364

RESUMO

For conservation purposes, it is important to take into account the suitability of a species to particular habitats; this information may predict the long-term survival of a species. In this sense, morphological measures of developmental stress, such as fluctuating asymmetry, can be proxies for an individual's performance in different regions. In this study, we conducted tests to determine whether areas with different levels of suitability for a species (generated by ecological niche models) were congruent with morphological markers that reflect environmental stress and morphological variance. We generated a Maxent niche model and compared the suitability assessments of several areas with the skull morphology data (fluctuating asymmetry and morphological disparity) of populations of the Atlantic forest endemic to Brazil rodent Akodon cursor. Our analyses showed a significant negative relationship between suitability levels and fluctuating asymmetry levels, which indicates that in less suitable areas, the individuals experience numerous disturbances during skull ontogeny. We have not found an association between morphological variance and environmental suitability. As expected, these results suggest that in environments with a lower suitability, developmental stress is increased. Such information is helpful in the understanding of the species evolution and in the selection of priority areas for the conservation of species.


Assuntos
Ecossistema , Roedores/anatomia & histologia , Roedores/crescimento & desenvolvimento , Crânio/anatomia & histologia , Animais , Evolução Biológica , Brasil , Florestas , Geografia , Modelos Teóricos , Dinâmica Populacional
6.
PLoS One ; 9(9): e108469, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25250657

RESUMO

Increased attention towards the Neotropical cats Leopardus guttulus and L. geoffroyi was prompted after genetic studies identified the occurrence of extensive hybridization between them at their geographic contact zone in southern Brazil. This is a region where two biomes intersect, each of which is associated with one of the hybridizing species (Atlantic Forest with L. guttulus and Pampas with L. geoffroyi). In this study, we conducted in-depth analyses of multiple molecular markers aiming to characterize the magnitude and spatial structure of this hybrid zone. We also performed a morphological assessment of these species, aiming to test their phenotypic differentiation at the contact zone, as well as the correlation between morphological features and the admixture status of the individuals. We found strong evidence for extensive and complex hybridization, with at least 40% of the individuals sampled in Rio Grande do Sul state (southernmost Brazil) identified as hybrids resulting from post-F1 generations. Despite such a high level of hybridization, samples collected in this state still comprised two recognizable clusters (genetically and morphologically). Genetically pure individuals were sampled mainly in regions farther from the contact zone, while hybrids concentrated in a central region (exactly at the interface between the two biomes). The morphological data set also revealed a strong spatial structure, which was correlated with the molecular results but displayed an even more marked separation between the clusters. Hybrids often did not present intermediate body sizes and could not be clearly distinguished morphologically from the parental forms. This observation suggests that some selective pressure may be acting on the hybrids, limiting their dispersal away from the hybrid zone and perhaps favoring genomic combinations that maintain adaptive phenotypic features of one or the other parental species.


Assuntos
Animais Selvagens , Felidae/genética , Variação Genética , Hibridização Genética , Animais , Brasil , Felidae/classificação , Especificidade da Espécie
7.
Genet Mol Biol ; 36(4): 586-97, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24385863

RESUMO

The puma is an iconic predator that ranges throughout the Americas, occupying diverse habitats. Previous phylogeographic analyses have revealed that it exhibits moderate levels of genetic structure across its range, with few of the classically recognized subspecies being supported as distinct demographic units. Moreover, most of the species' molecular diversity was found to be in South America. To further investigate the phylogeographic structure and demographic history of pumas we analyzed mtDNA sequences from 186 individuals sampled throughout their range, with emphasis on South America. Our objectives were to refine the phylogeographic assessment within South America and to investigate the demographic history of pumas using a coalescent approach. Our results extend previous phylogeographic findings, reassessing the delimitation of historical population units in South America and demonstrating that this species experienced a considerable demographic expansion in the Holocene, ca. 8,000 years ago. Our analyses indicate that this expansion occurred in South America, prior to the hypothesized re-colonization of North America, which was therefore inferred to be even more recent. The estimated demographic history supports the interpretation that pumas suffered a severe demographic decline in the Late Pleistocene throughout their distribution, followed by population expansion and re-colonization of the range, initiating from South America.

8.
J Hered ; 103(5): 672-81, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22585970

RESUMO

Isolated or semi-isolated small populations are commonly found among species, due to a naturally patchy occupancy of suitable habitats or also as a result of habitat alterations. These populations are subject to an increased risk of local extinction because they are more vulnerable to demographic, genetic, and environmental stochasticity. Considering that natural areas have been becoming progressively more fragmented and smaller, understanding the genetic structure and evolutionary dynamics of small populations is critical. Ctenomys lami has 26 karyotypes distributed in a small area (936 km(2)) continually modified by human actions. We assessed the genetic geographical structure of this species, examining 178 specimens sampled on a fine scale, using information from chromosomal variability, mitochondrial DNA control region and cytochrome c oxidase subunit I sequences, and 14 microsatellite loci. The observed isolation-by-distance pattern and a clinal genetic variation suggest a stepping-stone population model. The results did not indicate genetic structuring associated with distinct karyotypes. However, mitochondrial and nuclear molecular markers demonstrated the existence of 2 demes, which are not completely isolated but are probably reinforced by a geographical barrier. The vulnerability of C. lami is greater than previously supposed, and our data support the designation of one Evolutionary Significant Unit and one Management Unit, and also the inclusion of this species' conservation status as vulnerable.


Assuntos
Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Roedores/genética , Animais , Evolução Biológica , Brasil , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Fluxo Gênico , Loci Gênicos , Variação Genética , Haplótipos , Cariotipagem , Desequilíbrio de Ligação , Masculino , Repetições de Microssatélites , Mitocôndrias/genética , Família Multigênica , Linhagem , Filogeografia , Roedores/classificação , Análise de Sequência de DNA
9.
Genet Mol Biol ; 35(1): 81-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22481878

RESUMO

In reptiles, dorsal body darkness often varies with substrate color or temperature environment, and is generally presumed to be an adaptation for crypsis or thermoregulation. However, the genetic basis of pigmentation is poorly known in this group. In this study we analyzed the coding region of the melanocortin-1-receptor (MC1R) gene, and therefore its role underlying the dorsal color variation in two sympatric species of sand lizards (Liolaemus) that inhabit the southeastern coast of South America: L. occipitalis and L. arambarensis. The first is light-colored and occupies aeolic pale sand dunes, while the second is brownish and lives in a darker sandy habitat. We sequenced 630 base pairs of MC1R in both species. In total, 12 nucleotide polymorphisms were observed, and four amino acid replacement sites, but none of them could be associated with a color pattern. Comparative analysis indicated that these taxa are monomorphic for amino acid sites that were previously identified as functionally important in other reptiles. Thus, our results indicate that MC1R is not involved in the pigmentation pattern observed in Liolaemus lizards. Therefore, structural differences in other genes, such as ASIP, or variation in regulatory regions of MC1R may be responsible for this variation. Alternatively, the phenotypic differences observed might be a consequence of non-genetic factors, such as thermoregulatory mechanisms.

10.
Genet Mol Biol ; 35(4 (suppl)): 990-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23412911

RESUMO

We describe variation at microsatellite loci and the chromosomal polymorphisms of a hybrid population, and hybridizing populations of Ctenomys minutus (the minor tuco-tuco) from the coastal plain of Rio Grande do Sul, southern Brazil. Cytogenetic analysis and a survey of six microsatellite loci included 101 specimens of C. minutus from the parental populations (2n/AN = 42/74 and 48a/76) and their contact zone. Cytogenetic analysis recorded 26 different karyotypes exhibited by 50 individuals from the hybrid population. Of the 26 karyotypes, only 14% presented a parental-like configuration, and none had the combinations of 2n and AN expected for an F1 hybrid. The remaining karyotypes were alternative hybrid forms, with 2n varying from 42 to 46 and AN from 68 to 80. These results suggest chromosomal rearrangements are only of minor significance in the establishment of reproductive barriers for this species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA