Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 35(12): 182, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31728757

RESUMO

Endophytes improve the host performance in areas of high plant endemicity. Paullinia cupana is an Amazonia plant species of economic and social importance due to the high caffeine concentration in its seeds. An interesting strategy to identify endophytic microorganisms with potential biotechnological application is to understand the factors that influence the endophytic community to rationalize the host management programs. We used the next-generation sequencing for bacterial 16S rRNA gene to examine how the P. cupana organ, genotype, and geographic location influenced its endophytic bacterial community. We obtained 1520 operational taxonomic units (OTUs) distributed in 19 phyla, 32 classes, 79 orders, 114 families and 174 genera. The P. cupana roots and leaves were specifically colonized by the bacterial genera Acidothermus and Porphyromonas, respectively, with high relative frequency. The plant organ type influenced the endophytic community's richness, diversity, OTUs composition, relative abundance of phyla and genera, and genera interaction network. However, the host plant genotype and geographic location influenced the composition and interaction among genera in the network analysis. Prevotella is a super-generalist genus in the interaction network of endophytic bacteria of P. cupana. This study revealed endophytic bacterial groups of importance to P. cupana and stressed that the host plant organ modulates the structure and interactions within this community. Our results indicated that the microbial community adapted to colonize P. cupana by adjusting to its composition and interaction network. The isolation of abundant and super-generalist bacterial genera shall help to examine their functionality to the composition and fitness of the endophytic community of P. cupana.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Ecologia , Endófitos/classificação , Endófitos/isolamento & purificação , Paullinia/microbiologia , Bactérias/genética , Brasil , DNA Bacteriano/isolamento & purificação , Endófitos/genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Interações Microbianas , Microbiota/genética , Filogenia , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Sementes/microbiologia
2.
Microbiol Res ; 207: 8-18, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29458872

RESUMO

Endophytic bacteria occupy the same niche of phytopathogens and may produce metabolites that induce the host plant systemic resistance and growth. Host and environmental variables often determine the endophytic community's structure and composition. In this study, we addressed whether the plant genotype, organ, and geographic location influence the structure, composition, and functionality of endophytic bacterial communities in Paullinia cupana. To characterize the communities and identify strains with potential application in agriculture, we analyzed two P. cupana genotypes cultivated in two cities of the State of Amazonas, Brazil. Endophytic bacteria were isolated from surface-disinfested root, leaf, and seed tissues through the fragmentation and maceration techniques. The colonization rate, number of bacteria, richness, diversity, and functional traits were determined. The plant growth-promoting ability of selected bacterial strains was assessed in Sorghum bicolor. We identified 95 bacterial species distributed in 29 genera and 3 phyla (Proteobacteria, Actinobacteria, and Firmicutes). The colonization rate, richness, diversity, and species composition varied across the plant organs; the last parameter also varied across the plant genotype and location. Some strains exhibited relevant plant growth-promoting traits and antagonistic traits against the main phytopathogens of P. cupana, but they were not separated by functional traits. The main bacterial strains with plant growth-promoting traits induced S. bicolor growth. Altogether, our findings open opportunities to study the application of isolated endophytic bacterial strains in the bioprospection of processes and products.


Assuntos
Actinobacteria/isolamento & purificação , Endófitos/isolamento & purificação , Firmicutes/isolamento & purificação , Paullinia/microbiologia , Proteobactérias/isolamento & purificação , Actinobacteria/classificação , Biodiversidade , Brasil , DNA Bacteriano/genética , Endófitos/metabolismo , Firmicutes/classificação , Microbiota/fisiologia , Paullinia/crescimento & desenvolvimento , Desenvolvimento Vegetal/fisiologia , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Proteobactérias/classificação , RNA Ribossômico 16S/genética , Sementes/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA