Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 6238, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069157

RESUMO

Polymyxin-carbapenem-resistant Klebsiella pneumoniae (PCR-Kp) with pan (PDR)- or extensively drug-resistant phenotypes has been increasingly described worldwide. Here, we report a PCR-Kp outbreak causing untreatable infections descriptively correlated with bacterial genomes. Hospital-wide surveillance of PCR-Kp was initiated in December-2014, after the first detection of a K. pneumoniae phenotype initially classified as PDR, recovered from close spatiotemporal cases of a sentinel hospital in Rio de Janeiro. Whole-genome sequencing of clinical PCR-Kp was performed to investigate similarities and dissimilarities in phylogeny, resistance and virulence genes, plasmid structures and genetic polymorphisms. A target phenotypic profile was detected in 10% (12/117) of the tested K. pneumoniae complex bacteria recovered from patients (8.5%, 8/94) who had epidemiological links and were involved in intractable infections and death, with combined therapeutic drugs failing to meet synergy. Two resistant bacterial clades belong to the same transmission cluster (ST437) or might have different sources (ST11). The severity of infection was likely related to patients' comorbidities, lack of antimicrobial therapy and predicted bacterial genes related to high resistance, survival, and proliferation. This report contributes to the actual knowledge about the natural history of PCR-Kp infection, while reporting from a time when there were no licensed drugs in the world to treat some of these infections. More studies comparing clinical findings with bacterial genetic markers during clonal spread are needed.


Assuntos
Infecções por Klebsiella , Polimixinas , Humanos , Polimixinas/farmacologia , Polimixinas/uso terapêutico , Klebsiella pneumoniae , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/genética , Brasil , Genoma Bacteriano , Surtos de Doenças , Carbapenêmicos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , Proteínas de Bactérias/genética
2.
Pharmaceutics ; 14(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36559240

RESUMO

The development of biomaterials to enable application of antimicrobial peptides represents a strategy of high and current interest. In this study, a bioparticle was produced by the complexation between an antimicrobial polypeptide and the biocompatible and biodegradable polysaccharides chitosan-N-arginine and alginate, giving rise to a colloidal polyelectrolytic complex of pH-responsive properties. The inclusion of the polypeptide in the bioparticle structure largely increases the binding sites of complexation during the bioparticles production, leading to its effective incorporation. After lyophilization, detailed evaluation of colloidal structure of redispersed bioparticles evidenced nano or microparticles with size, polydispersity and zeta potential dependent on pH and ionic strength, and the dependence was not withdrawn with the polypeptide inclusion. Significant increase of pore edge tension in giant vesicles evidenced effective interaction of the polypeptide-bioparticle with lipid model membrane. Antibacterial activity against Aeromonas dhakensis was effective at 0.1% and equal for the isolated polypeptide and the same complexed in bioparticle, which opens perspectives to the composite material as an applicable antibacterial system.

3.
Genome Biol Evol ; 14(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36208292

RESUMO

Trypanosomatids belong to a remarkable group of unicellular, parasitic organisms of the order Kinetoplastida, an early diverging branch of the phylogenetic tree of eukaryotes, exhibiting intriguing biological characteristics affecting gene expression (intronless polycistronic transcription, trans-splicing, and RNA editing), metabolism, surface molecules, and organelles (compartmentalization of glycolysis, variation of the surface molecules, and unique mitochondrial DNA), cell biology and life cycle (phagocytic vacuoles evasion and intricate patterns of cell morphogenesis). With numerous genomic-scale data of several trypanosomatids becoming available since 2005 (genomes, transcriptomes, and proteomes), the scientific community can further investigate the mechanisms underlying these unusual features and address other unexplored phenomena possibly revealing biological aspects of the early evolution of eukaryotes. One fundamental aspect comprises the processes and mechanisms involved in the acquisition and loss of genes throughout the evolutionary history of these primitive microorganisms. Here, we present a comprehensive in silico analysis of pseudogenes in three major representatives of this group: Leishmania major, Trypanosoma brucei, and Trypanosoma cruzi. Pseudogenes, DNA segments originating from altered genes that lost their original function, are genomic relics that can offer an essential record of the evolutionary history of functional genes, as well as clues about the dynamics and evolution of hosting genomes. Scanning these genomes with functional proteins as proxies to reveal intergenic regions with protein-coding features, relying on a customized threshold to distinguish statistically and biologically significant sequence similarities, and reassembling remnant sequences from their debris, we found thousands of pseudogenes and hundreds of open reading frames, with particular characteristics in each trypanosomatid: mutation profile, number, content, density, codon bias, average size, single- or multi-copy gene origin, number and type of mutations, putative primitive function, and transcriptional activity. These features suggest a common process of pseudogene formation, different patterns of pseudogene evolution and extant biological functions, and/or distinct genome organization undertaken by those parasites during evolution, as well as different evolutionary and/or selective pressures acting on distinct lineages.


Assuntos
Parasitos , Trypanosoma brucei brucei , Animais , Pseudogenes , Filogenia , Fases de Leitura Aberta , Genoma , Trypanosoma brucei brucei/genética , Parasitos/genética
4.
Biochim Biophys Acta Gen Subj ; 1866(12): 130244, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36162730

RESUMO

Antimicrobial peptides (AMPs) are promising tools for developing new antibiotics. We described the design of IKR18, an AMP designed with the aid of computational tools. IKR18 showed antimicrobial activity against Gram-negative and Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). CD studies revealed that IKR18 assumes an alpha-helical structure in the membrane-mimetic environment. The action mechanism IKR18 involves damage to the bacteria membrane, as demonstrated by Sytox green uptake. Furthermore, IKR18 displayed synergic and additive effects in combination with antibiotics ciprofloxacin and vancomycin. The peptide showed anti-biofilm activity in concentration and efficiency compared with commercial antibiotics, involving the direct death of bacteria, as confirmed by scanning electron microscopy. The anti-infective activity of IKR18 was demonstrated in the Galleria mellonella model infected with S. aureus, MRSA, and Acinetobacter baumannii. The novel bioinspired peptide, IKR18, proved to be effective in the control of bacterial infection, opening opportunities for the development of further assays, including preclinical models.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Mariposas , Animais , Peptídeos Antimicrobianos , Staphylococcus aureus , Testes de Sensibilidade Microbiana , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias
5.
Evol Bioinform Online ; 14: 1176934318797351, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210232

RESUMO

ß-lactamases, the enzymes responsible for resistance to ß-lactam antibiotics, are widespread among prokaryotic genera. However, current ß-lactamase classification schemes do not represent their present diversity. Here, we propose a workflow to identify and classify ß-lactamases. Initially, a set of curated sequences was used as a model for the construction of profiles Hidden Markov Models (HMM), specific for each ß-lactamase class. An extensive, nonredundant set of ß-lactamase sequences was constructed from 7 different resistance proteins databases to test the methodology. The profiles HMM were improved for their specificity and sensitivity and then applied to fully assembled genomes. Five hierarchical classification levels are described, and a new class of ß-lactamases with fused domains is proposed. Our profiles HMM provide a better annotation of ß-lactamases, with classes and subclasses defined by objective criteria such as sequence similarity. This classification offers a solid base to the elaboration of studies on the diversity, dispersion, prevalence, and evolution of the different classes and subclasses of this critical enzymatic activity.

6.
PLoS One ; 13(5): e0197511, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29799863

RESUMO

Pesticides are one of the most widely used pest and disease control measures in plant crops and their indiscriminate use poses a direct risk to the health of populations and environment around the world. As a result, there is a great need for the development of new, less toxic molecules to be employed against plant pathogens. In this work, we employed an in silico approach to study the genes coding for enzymes of the genomes of three commercially important plants, soybean (Glycine max), tomato (Solanum lycopersicum) and corn (Zea mays), as well as 15 plant pathogens (4 bacteria and 11 fungi), focusing on revealing a set of essential and non-homologous isofunctional enzymes (NISEs) that could be prioritized as drug targets. By combining sequence and structural data, we obtained an initial set of 568 cases of analogy, of which 97 were validated and further refined, revealing a subset of 29 essential enzymatic activities with a total of 119 different structural forms, most belonging to central metabolic routes, including the carbohydrate metabolism, the metabolism of amino acids, among others. Further, another subset of 26 enzymatic activities possess a tertiary structure specific for the pathogen, not present in plants, men and Apis mellifera, which may be of importance for the development of specific enzymatic inhibitors against plant diseases that are less harmful to humans and the environment.


Assuntos
Glycine max/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Solanum lycopersicum/microbiologia , Zea mays/microbiologia , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Bactérias/genética , Simulação por Computador , Produtos Agrícolas/microbiologia , Descoberta de Drogas , Fungos/efeitos dos fármacos , Fungos/enzimologia , Fungos/genética , Genoma Bacteriano , Genoma Fúngico , Humanos , Praguicidas/farmacologia , Praguicidas/toxicidade , Melhoramento Vegetal
7.
Genome Biol Evol ; 9(6): 1624-1636, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28854631

RESUMO

Since enzymes catalyze almost all chemical reactions that occur in living organisms, it is crucial that genes encoding such activities are correctly identified and functionally characterized. Several studies suggest that the fraction of enzymatic activities in which multiple events of independent origin have taken place during evolution is substantial. However, this topic is still poorly explored, and a comprehensive investigation of the occurrence, distribution, and implications of these events has not been done so far. Fundamental questions, such as how analogous enzymes originate, why so many events of independent origin have apparently occurred during evolution, and what are the reasons for the coexistence in the same organism of distinct enzymatic forms catalyzing the same reaction, remain unanswered. Also, several isofunctional enzymes are still not recognized as nonhomologous, even with substantial evidence indicating different evolutionary histories. In this work, we begin to investigate the biological significance of the cooccurrence of nonhomologous isofunctional enzymes in human metabolism, characterizing functional analogous enzymes identified in metabolic pathways annotated in the human genome. Our hypothesis is that the coexistence of multiple enzymatic forms might not be interpreted as functional redundancy. Instead, these enzymatic forms may be implicated in distinct (and probably relevant) biological roles.


Assuntos
Enzimas/genética , Enzimas/metabolismo , Catálise , Evolução Molecular , Genoma Humano , Humanos , Redes e Vias Metabólicas
8.
Genome Announc ; 3(5)2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26430044

RESUMO

Mycobacterium tuberculosis of the Bejing subtype (MtbB) is transmitted efficiently in high burden countries for this genotype. A higher virulence was associated with isolates of the "modern" Beijing genotype sub-lineages when compared to "ancient" ones. Here, we report the full genomes of the strain representing these two genotypes from Brazil, a country with a low incidence of MtbB.

9.
Arq Bras Cir Dig ; 28(1): 17-9, 2015.
Artigo em Inglês, Português | MEDLINE | ID: mdl-25861062

RESUMO

BACKGROUND: The cystic dilatation of the biliary tract is a rare disease and uncertain origin. It is recognized more frequently in children; however, its incidence comes increasing in adults, representing 20% of the cases. AIM: To evaluate morbimortality rates, evolution and handing of patients with cystic dilatation bile ducts in adults. METHODS: Were evaluated, retrospectively, five adults who had the diagnosis of choledochal cyst and that had been submitted to some surgical procedure. RESULTS: Abdominal pain was the commonest complain to all patients. Jaundice was present in 80%. Ultrasound scanning was done in all the cases as initial examination. CT scan, magnetic resonance imaging and endoscopic retrograde cholangiopancreatography were also done in some patients; however, the diagnosis was established intra-operatively in all cases. The cyst resection with reconstruction of the biliary tract was done in 60%; the cystojejunostomy in 20%; and in 20% biliary tract drainage. CONCLUSIONS: Biliary tract cystic dilatation is a rare disease. However, its incidence is increasing in the adult population, so, it must be thought as differential diagnosis when facing obstructive jaundice.


Assuntos
Cisto do Colédoco/cirurgia , Adulto , Cisto do Colédoco/patologia , Dilatação Patológica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
10.
Evol Bioinform Online ; 10: 131-53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25336895

RESUMO

Leishmaniasis is an infectious disease caused by Leishmania species. Leishmania amazonensis is a New World Leishmania species belonging to the Mexicana complex, which is able to cause all types of leishmaniasis infections. The L. amazonensis reference strain MHOM/BR/1973/M2269 was sequenced identifying 8,802 codifying sequences (CDS), most of them of hypothetical function. Comparative analysis using six Leishmania species showed a core set of 7,016 orthologs. L. amazonensis and Leishmania mexicana share the largest number of distinct orthologs, while Leishmania braziliensis presented the largest number of inparalogs. Additionally, phylogenomic analysis confirmed the taxonomic position for L. amazonensis within the "Mexicana complex", reinforcing understanding of the split of New and Old World Leishmania. Potential non-homologous isofunctional enzymes (NISE) were identified between L. amazonensis and Homo sapiens that could provide new drug targets for development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA