Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37628260

RESUMO

The majority vote model is one of the simplest opinion systems yielding distinct phase transitions and has garnered significant interest in recent years. This model, as well as many other stochastic lattice models, are formulated in terms of stochastic rules with no connection to thermodynamics, precluding the achievement of quantities such as power and heat, as well as their behaviors at phase transition regimes. Here, we circumvent this limitation by introducing the idea of a distinct and well-defined thermal reservoir associated to each local configuration. Thermodynamic properties are derived for a generic majority vote model, irrespective of its neighborhood and lattice topology. The behavior of energy/heat fluxes at phase transitions, whether continuous or discontinuous, in regular and complex topologies, is investigated in detail. Unraveling the contribution of each local configuration explains the nature of the phase diagram and reveals how dissipation arises from the dynamics.

2.
Phys Rev E ; 107(6-1): 064135, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37464711

RESUMO

We show that models of opinion formation and dissemination in a community of individuals can be framed within stochastic thermodynamics from which we can build a nonequilibrium thermodynamics of opinion dynamics. This is accomplished by decomposing the original transition rate that defines an opinion model into two or more transition rates, each representing the contact with heat reservoirs at different temperatures, and postulating an energy function. As the temperatures are distinct, heat fluxes are present even at the stationary state and linked to the production of entropy, the fundamental quantity that characterizes nonequilibrium states. We apply the present framework to a generic-vote model including the majority-vote model in a square lattice and in a cubic lattice. The fluxes and the rate of entropy production are calculated by numerical simulation and by the use of a pair approximation.

3.
Phys Rev E ; 106(3-1): 034129, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36266911

RESUMO

We study closed systems of particles that are subject to stochastic forces in addition to the conservative forces. The stochastic equations of motion are set up in such a way that the energy is strictly conserved at all times. To ensure this conservation law, the evolution equation for the probability density is derived using an appropriate interpretation of the stochastic equation of motion that is not the Itô nor the Stratonovic interpretation. The trajectories in phase space are restricted to the surface of constant energy. Despite this restriction, the entropy is shown to increase with time, expressing irreversible behavior and relaxation to equilibrium. This main result of the present approach contrasts with that given by the Liouville equation, which also describes closed systems, but does not show irreversibility.

4.
Phys Rev E ; 102(5-1): 052701, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33327118

RESUMO

We analyze a molecular model to describe the phase transitions between the isotropic, nematic, smectic-A, and smectic-C phases. The smectic phases are described by the use of a pair potential, which lacks the full rotational symmetry because of the cylindrical symmetry around the smectic axis. The tilt of the long molecules inside the smectic layers is favored by a biquadratic pair potential, which compete with the pair potential of the McMillan model. The part of the phase diagram showing the first three phases is similar to that of the McMillan molecular model. The smectic-C phase is separated from the nematic by a continuous phase transition line along which the tilt angle is nonzero. The tilt angle vanishes continuously when one reaches the line separating the smectic-C and the smectic-A line.

5.
Phys Rev E ; 102(3-1): 032114, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33076017

RESUMO

We analyze the stochastic thermodynamics of systems with a continuous space of states. The evolution equation, the rate of entropy production, and other results are obtained by a continuous time limit of a discrete time formulation. We point out the role of time reversal and of the dissipation part of the probability current on the production of entropy. We show that the rate of entropy production is a bilinear form in the components of the dissipation probability current with coefficients being the components of the precision matrix related to the Gaussian noise. We have also analyzed a type of noise that makes the energy function to be strictly constant along the stochastic trajectory, being appropriate to describe an isolated system. This type of noise leads to nonzero entropy production and thus to an increase of entropy in the system. This result contrasts with the invariance of the entropy predicted by the Liouville equation, which also describes an isolated system.

6.
Phys Rev E ; 101(1-1): 012130, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32069645

RESUMO

We study the properties of nonequilibrium systems modelled as spin models without defined Hamiltonian as the majority voter model. This model has transition probabilities that do not satisfy the condition of detailed balance. The lack of detailed balance leads to entropy production phenomena, which are a hallmark of the irreversibility. By considering that voters can diffuse on the lattice we analyze how the entropy production and how the critical properties are affected by this diffusion. We also explore two important aspects of the diffusion effects on the majority voter model by studying entropy production and entropy flux via time-dependent and steady-state simulations. This study is completed by calculating some critical exponents as function of the diffusion probability.

7.
Phys Rev E ; 101(1-1): 012132, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32069596

RESUMO

Using stochastic thermodynamics, the properties of interacting linear chains subject to periodic drivings are investigated. The systems are described by Fokker-Planck-Kramers equation and exact solutions are obtained as functions of the modulation frequency and strength constants. Analysis will be carried out for short and long chains. In the former case, explicit expressions are derived for a chain of two particles, in which the entropy production is written down as a bilinear function of thermodynamic forces and fluxes, whose associated Onsager coefficients are evaluated for distinct kinds of periodic drivings. The limit of long chains is analyzed by means of a protocol in which the intermediate temperatures are self-consistently chosen and the entropy production is decomposed as a sum of two individual contributions, one coming from real baths (placed at extremities of lattice) and other from self-consistent baths. Whenever the former dominates for short chains, the latter contribution prevails for long ones. The thermal reservoirs lead to a heat flux according to Fourier's law.

8.
Phys Rev E ; 99(5-1): 052131, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31212476

RESUMO

Using stochastic thermodynamics, we determine the entropy production and the dynamic heat capacity of systems subject to a sinusoidally time-dependent temperature, in which case the systems are permanently out of thermodynamic equilibrium, inducing a continuous generation of entropy. The systems evolve in time according to a Fokker-Planck or a Fokker-Planck-Kramers equation. Solutions of these equations, for the case of harmonic forces, are found exactly, from which the heat flux, the production of entropy, and the dynamic heat capacity are obtained as functions of the frequency of the temperature modulation. These last two quantities are shown to be related to the real and imaginary parts of the complex heat capacity.

9.
Phys Rev E ; 99(5-1): 052138, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31212577

RESUMO

The Boltzmann kinetic equation is obtained from an integrodifferential master equation that describes a stochastic dynamics in phase space of an isolated thermodynamic system. The stochastic evolution yields a generation of entropy, leading to an increase of Gibbs entropy, in contrast to a Hamiltonian dynamics, described by the Liouville equation, for which the entropy is constant in time. By considering transition rates corresponding to collisions of two particles, the Boltzmann equation is attained. When the angle of the scattering produced by collisions is small, the master equation is shown to be reduced to a differential equation of the Fokker-Planck type. When the dynamics is of the Hamiltonian type, the master equation reduces to the Liouville equation. The present approach is understood as a stochastic interpretation of the reasonings employed by Maxwell and Boltzmann in the kinetic theory of gases regarding the microscopic time evolution.

10.
J Chem Phys ; 148(22): 224104, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29907050

RESUMO

We investigate the nonequilibrium stationary states of systems consisting of chemical reactions among molecules of several chemical species. To this end, we introduce and develop a stochastic formulation of nonequilibrium thermodynamics of chemical reaction systems based on a master equation defined on the space of microscopic chemical states and on appropriate definitions of entropy and entropy production. The system is in contact with a heat reservoir and is placed out of equilibrium by the contact with particle reservoirs. In our approach, the fluxes of various types, such as the heat and particle fluxes, play a fundamental role in characterizing the nonequilibrium chemical state. We show that the rate of entropy production in the stationary nonequilibrium state is a bilinear form in the affinities and the fluxes of reaction, which are expressed in terms of rate constants and transition rates, respectively. We also show how the description in terms of microscopic states can be reduced to a description in terms of the numbers of particles of each species, from which follows the chemical master equation. As an example, we calculate the rate of entropy production of the first and second Schlögl reaction models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA