Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39065009

RESUMO

Volatile oils or essential oils (EOs) were extracted from three V. sebifera samples (labeled as A, B, and C) in September 2018 and February 2019; the extraction process involved hydrodistillation of the leaves. The chemical compositions of the EOs were analyzed using gas chromatography-mass spectrometry (GC/MS). The volatile components were identified by comparing their retention indices and mass spectra with standard substances documented in the literature (ADAMS). The antioxidant activity of the EOs was evaluated using 2, 2-diphenyl-1-picrylhydrazyl (DPPH), while their toxicity was assessed using Artemia salina Leach. Molecular docking was utilized to examine the interaction between the major constituents of V. sebifera EO and acetylcholinesterase (AChE), a molecular target linked to toxicity in A. salina models. The EO obtained from specimen A, collected in September 2018, was characterized by being primarily composed of (E,E)-α-farnesene (47.57%), (E)-caryophyllene (12.26%), and α-pinene (6.93%). Conversely, the EO from specimen A, collected in February 2019, was predominantly composed of (E,E)-α-farnesene (42.82%), (E)-caryophyllene (16.02%), and bicyclogermacrene (8.85%), the EO from specimen B, collected in September 2018, primarily contained (E,E)-α-farnesene (47.65%), (E)-caryophyllene (19.67%), and α-pinene (11.95%), and the EO from the leaves collected in February 2019 was characterized by (E,E)-α-farnesene (23.57%), (E)-caryophyllene (19.34%), and germacrene D (7.33%). The EO from the leaves collected in September 2018 contained (E,E)-α-farnesene (26.65%), (E)-caryophyllene (15.7%), and germacrene D (7.72%), while the EO from the leaves collected in February 2019 was primarily characterized by (E,E)-α-farnesene (37.43%), (E)-caryophyllene (21.4%), and α-pinene (16.91%). Among these EOs, sample B collected in February 2019 demonstrated the highest potential for inhibiting free radicals, with an inhibition rate of 34.74%. Conversely, the EOs from specimen A exhibited the highest toxic potentials, with an lethal concentration 50 (LC50) value of 57.62 ± 1.53 µg/mL, while specimen B had an LC50 value of 74.72 ± 2.86 µg/mL. Molecular docking results suggested that hydrophobic interactions significantly contributed to the binding of the major compounds in the EO from sample B to the binding pocket of AChE.


Assuntos
Antioxidantes , Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Animais , Artemia/efeitos dos fármacos , Simulação de Acoplamento Molecular , Folhas de Planta/química , Acetilcolinesterase/metabolismo
2.
J Mol Model ; 30(7): 203, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38858279

RESUMO

CONTEXT: The Omicron, Kappa, and Delta variants are different strains of the SARS-CoV-2 virus. Graphene oxide quantum dots (GOQDs) represent a burgeoning class of oxygen-enriched, zero-dimensional materials characterized by their sub-20-nm dimensions. Exhibiting pronounced quantum confinement and edge effects, GOQDs manifest exceptional physical-chemical attributes. This study delves into the potential of graphene oxide quantum dots, elucidating their inherent properties pertinent to the surface structures of SARS-CoV-2, employing an integrated computational approach for the repositioning of inhibitory agents. METHODS: Following rigorous adjustment tests, a spectrum of divergent bonding conformations emerged, with particular emphasis placed on identifying the conformation exhibiting optimal adjustment scores and interactions. The investigation employed molecular docking simulations integrating affinity energy evaluations, electrostatic potential clouds, molecular dynamics encompassing average square root calculations, and the computation of Gibbs-free energy. These values quantify the strength of interaction between GOQDs and SARS-CoV-2 spike protein variants. The receptor structures were optimized using the CHARM-GUI server employing force field AMBERFF14SB. The algorithm embedded in CHARMM offers an efficient interpolation scheme and automatic step size selection, enhancing the efficiency of the optimization process. The 3D structures of the ligands are constructed and optimized with density functional theory (DFT) method based on the most stable conformer of each binder. Autodock Vina Software (ADV) was utilized, where essential parameters were specified. Electrostatic potential maps (MEPs) provide a visual depiction of molecules' charge distributions and related properties. After this, molecular dynamics simulations employing the CHARM36 force field in Gromacs 2022.2 were conducted to investigate GOs' interactions with surface macromolecules of SARS-CoV-2 in an explicit aqueous environment. Furthermore, our investigation suggests that lower values indicate stronger binding. Notably, GO-E consistently showed the most negative values across interactions with different variants, suggesting a higher affinity compared to other GOQDs (GO-A to GO-D).


Assuntos
Grafite , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pontos Quânticos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Grafite/química , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Pontos Quânticos/química , Humanos , Ligação Proteica , Eletricidade Estática , COVID-19/virologia
3.
Molecules ; 29(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38930786

RESUMO

The present study provides a comprehensive analysis of the chemical composition of essential oils from species of the Myrcia genus and their applications. The compiled results highlight the chemical diversity and biological activities of these oils, emphasizing their potential importance for various therapeutic and industrial applications. The findings reveal that Myrcia essential oils present a variety of bioactive compounds, such as monoterpenes and sesquiterpenes, which demonstrate antimicrobial activities against a range of microorganisms, including Gram-positive and Gram-negative bacteria, as well as yeasts. Furthermore, this study highlights the phytotoxic activity of these oils, indicating their potential for weed control. The results also point to the insecticidal potential of Myrcia essential oils against a range of pests, showing their viability as an alternative to synthetic pesticides. Additionally, species of the genus Myrcia have demonstrated promising hypoglycemic effects, suggesting their potential in diabetes treatment. This comprehensive synthesis represents a significant advancement in understanding Myrcia essential oils, highlighting their chemical diversity and wide range of biological activities. However, the need for further research is emphasized to fully explore the therapeutic and industrial potential of these oils, including the identification of new compounds, understanding of their mechanisms of action, and evaluation of safety and efficacy in different contexts.


Assuntos
Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Inseticidas/química , Inseticidas/farmacologia , Myrtaceae/química , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Animais , Óleos de Plantas/farmacologia , Óleos de Plantas/química
4.
Molecules ; 29(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474459

RESUMO

The essential oils and aroma derived from the leaves (L), stems (St), and spikes (s) of Piper nigrum L. cv. Guajarina were extracted; the essential oils were extracted using hydrodistillation (HD), and steam distillation (SD), and the aroma was obtained by simultaneous distillation and extraction (SDE). Chemical constituents were identified and quantified using GC/MS and GC-FID. Preliminary biological activity was assessed by determining the toxicity against Artemia salina Leach larvae, calculating mortality rates, and determining lethal concentration values (LC50). The predominant compounds in essential oil samples included α-pinene (0-5.6%), ß-pinene (0-22.7%), limonene (0-19.3%), 35 linalool (0-5.3%), δ-elemene (0-10.1%), ß-caryophyllene (0.5-21.9%), γ-elemene (7.5-33.9%), and curzerene (6.9-31.7%). Multivariate analysis, employing principal component analysis (PCA) and hierarchical cluster analysis (HCA), revealed three groups among the identified classes and two groups among individual compounds. The highest antioxidant activity was found for essential oils derived from the leaves (167.9 41 mg TE mL-1). Larvicidal potential against A. salina was observed in essential oils obtained from the leaves (LC50 6.40 µg mL-1) and spikes (LC50 6.44 µg mL-1). The in silico studies demonstrated that the main compounds can interact with acetylcholinesterase, thus showing the potential molecular interaction responsible for the toxicity of the essential oil in A. salina.


Assuntos
Artrópodes , Óleos Voláteis , Piper nigrum , Piper , Sesquiterpenos , Animais , Óleos Voláteis/química , Acetilcolinesterase , Cromatografia Gasosa-Espectrometria de Massas , Piper/química , Óleos de Plantas/química
5.
Int J Food Sci ; 2023: 1446972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075189

RESUMO

Pentaclethra macroloba (Willd.), whose common name is "pracaxi," is naturally found in the Amazon region. The present study is aimed at analyzing the anatomy, seed histochemistry, and chemical composition in fatty acid profile of P. macroloba seed oils. Seeds were collected in the cities of Belém, Marituba, and São Domingos do Capim-PA. For the study in light microscopy, scanning electron microscopy, and histochemistry, seeds were sectioned in cross and longitudinal sections of the embryonic axis and fixed in formaldehyde, acetic acid, and 50% ethyl alcohol; neutral-buffered formalin; and formaldehyde and ferrous sulfate and stored in 70% ethyl alcohol. For the anatomical study, the seeds were subjected to the usual techniques of plant anatomy. Histochemical tests were performed on plant material, freehand sectioned, and embedded in histological paraffin with DMSO. The fatty acid profile was determined for gas chromatography (GC-FID). Integument is divided into three strata, monoseriate exotesta, mesotesta formed by several layers of parenchyma cells, and monoseriate endotesta, formed by compressed cells. Cotyledons are composed of thin-walled parenchyma cells with several secretory cavities and secretory idioblasts. The main metabolic classes are lipids, phenolic compounds, carbohydrates, proteins, and alkaloids. The main fatty acids found in P. macroloba oil are oleic, behenic, lignoceric, and linoleic. P. macroloba seeds have important anatomical characteristics for their circumscription in Leguminosae and also in Caesalpinioideae, and their oil is rich in fatty acids essential to the human diet, providing many benefits to the human health, such as fatty acids belonging to the omega family (linoleic, oleic).

6.
Molecules ; 28(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37764258

RESUMO

Plectranthus ornatus is a medicinal and aromatic plant used in traditional and alternative medicine. In this study, leaves of P. ornatus were collected in two cities of the state of Pará, "Quatipuru" and "Barcarena", and were used with the objective of analyzing, through morphoanatomical data and histochemical and phytochemical studies of essential oil, the samples present structural differences and differences in their chemical composition. Anatomical and histochemical analyses were performed by transverse, using longitudinal sections of 8 µm to 10 µm to perform epidermal dissociation, diaphonization, and tests to identify classes of secondary metabolites. The essential oils were isolated by hydrodistillation, and the identification of the chemical composition was performed by gas chromatography coupled with mass spectrometry. The anatomical study shows that there is no difference between specimens collected in different locations, and stellate trichomes were identified. The histochemical study detected total lipids and acids, terpenes, polysaccharides, phenolic compounds, tannins, alkaloids, and calcium oxalate. The low essential oil yield may be related to the low density of secretory cells (glandular trichomes), the unidentified compounds in the highest concentration in the essential oil were in relation to the chemical composition of the essential oils, and the major compounds were α-pinene, sabinene, (E)-caryophyllene, caryophyllene oxide, and oct-1-en-3-ol. The results provide new information about the anatomy and histochemistry of P. ornatus.

7.
PLoS One ; 18(8): e0289991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616214

RESUMO

Chemical composition of the essential oils (EOs) from the leaves of five Annonaceae species found in the amazon region was analyzed by Gas chromatography coupled to mass spectrometry. The antifungal activity of theses EOs was tested against Candida albicans, Candida auris, Candida famata, Candida krusei and Candida tropicalis. In addition, an in silico study of the molecular interactions was performed using molecular modeling approaches. Spathulenol (29.88%), α-pinene (15.73%), germacra-4(15),5,10(14)-trien-1-α-ol (6.65%), and caryophylene oxide (6.28%) where the major constitents from the EO of Anaxagorea dolichocarpa. The EO of Duguetia echinophora was characterized by ß-phellanderene (24.55%), cryptone (12.43%), spathulenol (12.30%), and sabinene (7.54%). The major compounds of the EO of Guatteria scandens where ß-pinene (46.71%), α-pinene (9.14%), bicyclogermacrene (9.33%), and E-caryophyllene (8.98%). The EO of Xylopia frutescens was characterized by α-pinene (40.12%) and ß-pinene (36.46%). Spathulenol (13.8%), allo-aromadendrene epoxide (8.99%), thujopsan-2-α-ol (7.74%), and muurola-4,10(14)-dien-1-ß-ol (7.14%) were the main chemical constituents reported in Xylopia emarginata EO. All EOs were active against the strains tested and the lowest inhibitory concentrations were observed for the EOs of D. echinophora, X. emarginata, and X. frutescens against C. famata the Minimum Inhibitory Concentration values of 0.07, 0.019 and 0.62 µL.mL-1, respectively. The fungicidal action was based on results of minimum fungicidal concentration and showed that the EOs showed fungicide activity against C. tropicalis (2.5 µL.mL-1), C. krusei (2.5 µL.mL-1) and C. auris (5 µL.mL-1), respectively. The computer simulation results indicated that the major compounds of the EOs can interact with molecular targets of Candida spp.


Assuntos
Annonaceae , Simulação por Computador , Cromatografia Gasosa-Espectrometria de Massas , Candida tropicalis
8.
Molecules ; 28(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985605

RESUMO

The essential oils (EOs) of Guatteria schomburgkiana (Gsch) and Xylopia frutescens (Xfru) (Annonaceae) were obtained by hydrodistillation, and their chemical composition was evaluated by gas chromatography-mass spectrometry (GC/MS). Herbicide activity was measured by analyzing the seed germination percentage and root and hypocotyl elongation of two invasive species: Mimosa pudica and Senna obtusifolia. The highest yield was obtained for the EO of Xfru (1.06%). The chemical composition of Gsch was characterized by the presence of the oxygenated sesquiterpenes spathulenol (22.40%) and caryophyllene oxide (14.70%). Regarding the EO of Xfru, the hydrocarbon monoterpenes α-pinene (35.73%) and ß-pinene (18.90%) were the components identified with the highest concentrations. The germination of seeds of S. obtusifolia (13.33 ± 5.77%) showed higher resistance than that of seeds of M. pudica (86.67 ± 5.77%). S. obtusifolia was also more sensitive to the EO of Xfru in terms of radicle (55.22 ± 2.72%) and hypocotyl (71.12 ± 3.80%) elongation, while M. pudica showed greater sensitivity to the EO of Gsch. To screen the herbicidal activity, the molecular docking study of the major and potent compounds was performed against 4-hydroxyphenylpyruvate dioxygenase (HPPD) protein. Results showed good binding affinities and attributed the strongest inhibitory activity to δ-cadinene for the target protein. This work contributes to the study of the herbicidal properties of the EOs of species of Annonaceae from the Amazon region.


Assuntos
Annonaceae , Guatteria , Óleos Voláteis , Xylopia , Annonaceae/química , Xylopia/química , Guatteria/química , Óleos Voláteis/química , Brasil , Simulação de Acoplamento Molecular , Folhas de Planta/química
9.
Nat Prod Res ; 37(19): 3344-3351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35481816

RESUMO

In the present study, are extracted volatile concentrate from Ipomoea asarifolia Poir. and Ipomoea setifera (Desr.) Roem. & Schult. in five-month seasonal gradient. The flowers were subjected to simultaneous distillation - extraction (SDE). The chemical composition of the volatile concentrate was determined by gas chromatography (CG/MS) and (CG-FID). Principal Component Analysis (PCA) and Hierarchical Clustering Analysis (HCA) were performed with the chemical constituents. It was observed that the chemical composition of I. asarifolia varied more with seasonality in relation to the species I. setifera. Furthermore, there is a possibility that germacrene D and α-copaene, the main components of the variation volatile of I. asarifolia and with higher concentrations in the rainy months, have ecological importance, attracting specific pollinators for the rainy season. This is the first study to report the chemical composition of the volatile compounds of I. asarifolia and I. setifera along a seasonal gradient.

10.
Antioxidants (Basel) ; 11(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36552618

RESUMO

Croton campinarensis Secco, A. Rosário & PE Berry is an aromatic species recently discovered in the Amazon region. This study first reports the chemical profile, antioxidant capacity, and preliminary toxicity to A. salina Leach of the essential oil (EO) of this species. The phytochemical profile of the essential oil was analyzed by gas chromatography (GC/MS) and (GC-FID). The antioxidant capacity of the EO was measured by its inhibition of ABTS•+ and DPPH• radicals. Molecular modeling was used to evaluate the mode of interaction of the major compounds with acetylcholinesterase (AChE). The results indicate that the EO yield was 0.24%, and germacrene D (26.95%), bicyclogermacrene (17.08%), (E)-caryophyllene (17.06%), and δ-elemene (7.59%) were the major compounds of the EO sample. The EO showed a TEAC of 0.55 ± 0.04 mM·L-1 for the reduction of the ABTS•+ radical and 1.88 ± 0.08 mM·L-1 for the reduction of the DPPH• radical. Regarding preliminary toxicity, the EO was classified as toxic in the bioassay with A. salina (LC50 = 20.84 ± 4.84 µg·mL-1). Through molecular docking, it was found that the majority of the EO components were able to interact with the binding pocket of AChE, a molecular target related to toxicity evaluated in A. salina models; the main interactions were van der Waals and π-alkyl interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA