Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Peptides ; 95: 57-61, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28733141

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease that leads to joint destruction. The fibroblast-like synoviocytes (FLS) has a central role on the disease pathophysiology. The present study aimed to examine the role of gastrin-releasing peptide (GRP) and its receptor (GRPR) on invasive behavior of mice fibroblast-like synoviocytes (FLS), as well as to evaluate GRP-induced signaling on PI3K/AKT pathway. The expression of GRPR in FLS was investigated by immunocytochemistry, western blot (WB) and qRT-PCR. The proliferation and invasion were assessed by SRB and matrigel-transwell assay after treatment with GRP and/or RC-3095 (GRPR antagonist), and/or Ly294002 (inhibitor of PI3K/AKT pathway). Finally, AKT phosphorylation was assessed by WB. GRPR protein was detected in FLS and the exposure to GRP increased FLS invasion by nearly two-fold, compared with untreated cells (p<0.05), while RC-3095 reversed that effect (p<0.001). GRP also increased phosphorylated AKT expression in FLS. When Ly294002 was added with GRP, it prevented the GRP-induced increased cell invasiveness (p<0.001). These data suggest that GRPR expression in FLS and that exogenous GRP are able to activate FLS invasion. This effect occurs at least in part through the AKT activation. Therefore, understanding of the GRP/GRPR pathway could be relevant in the development of FLS-targeted therapy for RA.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Peptídeo Liberador de Gastrina/administração & dosagem , Receptores da Bombesina/genética , Sinoviócitos/metabolismo , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromonas/administração & dosagem , Fibroblastos/efeitos dos fármacos , Peptídeo Liberador de Gastrina/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Morfolinas/administração & dosagem , Fosfatidilinositol 3-Quinases/genética , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/efeitos dos fármacos , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/patologia
2.
Exp Biol Med (Maywood) ; 238(12): 1421-30, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24186267

RESUMO

The mechanisms of muscle wasting and decreased mobility have a major functional effect in rheumatoid arthritis, but they have been poorly studied. The objective of our study is to describe muscular involvement and the pathways in an experimental model of arthritis compared to the pathways in disuse atrophy. Female Wistar rats were separated into three groups: control (CO), collagen-induced arthritis (CIA), and immobilized (IM). Spontaneous locomotion and weight were evaluated weekly. The gastrocnemius muscle was evaluated by histology and immunoblotting to measure the expression of myostatin (a negative regulator), LC3 (autophagy), MuRF-1 (proteasome-mediated proteolysis), MyoD, and myogenin (satellite-cell activation). The significance level was set at P < 0.05, and histological analysis of joints confirmed the severity of the arthropathy. There was a significant difference in spontaneous locomotion in the CIA group. Animal body weight, gastrocnemius muscle weight, and relative muscle weight decreased 20%, 30%, and 20%, respectively, in the CIA rats. Inflammatory infiltration and swelling were present in the gastrocnemius muscles of the CIA rats. The mean cross-sectional area was reduced by 30% in the CIA group and by 60% in the IM group. The expressions of myostatin and LC3 between the groups were similar. There was increased expression of MuRF-1 in the IM (1.9-fold) and CIA (3.1-fold) groups and of myogenin in the muscles of the CIA animals (1.7-fold), while MyoD expression was decreased in the IM (20%) rats. This study demonstrated that the development of experimental arthritis is associated with decreased mobility, body weight, and muscle loss. Both IM and CIA animal models presented muscle atrophy, but while proteolysis and the regeneration pathways were activated in the CIA model, there was no activation of regeneration in the IM model. We can assume that muscle atrophy in experimental arthritis is associated with the disease itself and not simply with decreased mobility.


Assuntos
Artrite/complicações , Músculos/patologia , Atrofia Muscular/etiologia , Animais , Artrite/induzido quimicamente , Artrite/fisiopatologia , Colágeno/farmacologia , Modelos Animais de Doenças , Feminino , Proteínas Associadas aos Microtúbulos/análise , Proteínas Musculares/análise , Músculos/química , Músculos/fisiopatologia , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Proteína MyoD/análise , Miogenina/análise , Miostatina/análise , Ratos , Ratos Wistar , Restrição Física/efeitos adversos , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA