Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lasers Med Sci ; 37(5): 2439-2447, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35075597

RESUMO

Photobiomodulation has been used to inactivate bacterial growth, in different laser or LED protocols. Thus, the aim of this study was to verify the inhibition of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, in ATCC strains and bacteria collected from patients with skin burns, after irradiation with LED; 300 µl of saline solution with bacterial suspension was irradiated at a concentration of 0.5-0.63, by the McFarland scale, after five serial dilutions, with evaluation of pre- and post-irradiation pH and temperature control. The cultures were placed in a bacteriological incubator at 37 °C for 24 h for later counting of colony-forming units (CFU). Data were analyzed by Shapiro-Wilk tests and single-factor ANOVA, with Tukey post hoc (p < 0.05). Both wavelengths and energy densities tested showed inhibition of bacterial growth. The comparison of the irradiated groups (ATCC) with the control group showed the following: S. aureus and P. aeruginosa 465 nm (40 J/cm2) and 630 nm (50 J/cm2) and E. coli 465 nm (40 J/cm2) and 630 nm (30 J/cm2). Among the ATCC S. aureus groups, there was a difference for 630 nm (30 J/cm2) and 465 nm (30, 40, 50 J/cm2). The bacteria from the burned patients were S. aureus (30 and 50 J/cm2) and P. aeruginosa (50 J/cm2). We conclude that different bacterial strains were reduced into colony-forming units after LED irradiation.


Assuntos
Terapia com Luz de Baixa Intensidade , Staphylococcus aureus , Escherichia coli/efeitos da radiação , Humanos , Luz , Pseudomonas aeruginosa/efeitos da radiação , Staphylococcus aureus/efeitos da radiação
2.
J Med Syst ; 44(4): 88, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32166455

RESUMO

INTRODUCTION: Effectiveness of light-emitting diode (LED) in biological tissue is due to the correct application of physical parameters. However, most studies found do not provide complete information on the physical characteristics of the diodes. It is necessary to carefully evaluate the diode parameters so that the results of research with this feature can be reproduced. The objective of this study was to develop a light-emitting device using LED, with proper measurements for application in clinical research. It was used 267 LEDs, powered with 12-V voltage and fixed on a plate of ethylene-vinyl acetate (25 × 42 cm), equidistant at 1.0 cm. For the calculation of red and infrared irradiation, a spectrometer was used, and the data were processed in routines implemented in the OriginPro 8.5.0 SR1 Software. The irradiance was determined by the integration of the spectral irradiation in the LED emission region. The red LED has a wavelength of 620 ± 10 nm, a power density of 52.86 mW/cm2, power of 6.6 mW, and total power of 1.76 W on the device. The infrared LED has a wavelength of 940 ± 10 nm, power density 33.7 mW/cm2, power of 6 mW, and total power of 1.6 W on the device. The LED characterization enables the generation and application of energy with greater precision and reproducibility. Besides, it is a light source, a device capable of framing large areas, reducing the time and cost of the application in different clinical conditions related to neuromuscular performance or rehabilitation.


Assuntos
Desenho de Equipamento , Fototerapia/instrumentação , Humanos , Raios Infravermelhos/uso terapêutico , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA