Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(1): 215-226, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37923939

RESUMO

In this work, we are pleased to present for the first time a 3D-printed electrochemical device using a lab-made conductive filament based on graphite (Gr) and polylactic acid (PLA) polymer matrix for the simultaneous detection of amoxicillin (AMX) and paracetamol (PAR). The sensor was properly characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Compared to the commercial glassy carbon electrode (GCE), the superior performance of the 3D-Gr/PLA electrode was verified with a 3.8-fold more favored charge transfer. A differential pulse voltammetry (DPV) method was proposed providing a linear working range of 4 to 12 µmol L-1 for both analytes and a limit of detection (LOD) of 0.80 and 0.51 µmol L-1 for AMX and PAR, respectively. Additionally, repeatability studies (n = 5, RSD < 5.7%) indicated excellent precision, and recovery percentages ranging from 89 to 109% when applied to synthetic human urine, saliva, and plasma samples, attested to the accuracy of the method. The studies also indicate that the sensor does not suffer significant interference from common substances (antibiotics and biomarkers) present in the biological fluids, which makes it a promising analytical tool considering its low-cost, ease of manufacturing, robustness, and electrochemical performance.


Assuntos
Acetaminofen , Grafite , Humanos , Acetaminofen/química , Amoxicilina , Grafite/química , Eletrodos , Poliésteres , Impressão Tridimensional , Técnicas Eletroquímicas
2.
Anal Bioanal Chem ; 415(2): 357-366, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36344667

RESUMO

In this work, the development of a disposable electrochemical device (US$ 0.02 per electrode) using a 3D printed support (3Ds) of acrylonitrile butadiene styrene (ABS) insulating filament with a composite material (CM) based on graphite and nail polish, immobilized on the support surface, was described for the electrochemical determination of diclofenac (DCF). The device was compared to the commercial glassy carbon electrode (GCE) and showed superior electroanalytical performance with approximately 1.8-fold higher current density. Additionally, an amperometric method for DCF determination in tap water, synthetic urine, and pharmaceutical formulation samples with the proposed electrode, using a flow injection analysis (FIA-AD) system, was developed. The optimized method presented excellent detectability (LOD = 0.47 µmol L-1), with excellent precision and accuracy (relative standard deviation < 5.6%) and percent recovery from spiked samples ranging from 89 to 106%. In addition, the sensor showed optimal analytical frequency with approximately 108 injections per hour, which demonstrates the potential of this system using the proposed disposable electrode for implementation in routine analysis and quality control with good selectivity and sensitivity.


Assuntos
Diclofenaco , Grafite , Diclofenaco/análise , Carbono , Água , Eletrodos , Técnicas Eletroquímicas/métodos
3.
J Inorg Biochem ; 239: 112047, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36428157

RESUMO

Currently the only drug available to treat Chagas disease in Brazil is benznidazole (BZN). Therefore, there is an urgent need to discover and develop new anti- Trypanosoma cruzi candidates. In our continuous effort to enhance clinical antiparasitic drugs using synergistic strategy, BZN was coordinated to silver and copper ions to enhance its effectiveness to treat that illness. In this work, the syntheses of four novel metal-BZN complexes, [Ag(BZN)2]NO3·H2O (1), [CuCl2(BZN)(H2O)]·1/2CH3CN (2), [Ag(PPh3)2(BZN)2]NO3·H2O (3), and [Cu(PPh3)2(BNZ)2]NO3·2H2O (4), and their characterization using multiple analytical and spectroscopic techniques such as Infrared (FTIR), Nuclear Magnetic Resonance (1H, 13C, 31P), UV-Visible (UV-Vis), Electron Paramagnetic Resonance (EPR), conductivity and elemental analysis are described. IC50 (Half-maximal inhibitory concentration) values of Ag-BZN compounds are about five to ten times lower than benznidazole itself in both proliferation stages of the parasite (epimastigotes and amastigotes). The cytotoxicity of both compounds in human cells (fibroblasts and hepatocytes) are comparable to BZN, indicating that Ag-BZN complexes can be more selective than BZN.


Assuntos
Anti-Infecciosos , Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Humanos , Prata/farmacologia , Cobre/farmacologia , Cobre/uso terapêutico , Antiparasitários/farmacologia , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Doença de Chagas/tratamento farmacológico , Nitroimidazóis/farmacologia , Anti-Infecciosos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA