Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37512841

RESUMO

The emergence of open ocean global-scale studies provided important information about the genomics of oceanic microbial communities. Metagenomic analyses shed light on the structure of marine habitats, unraveling the biodiversity of different water masses. Many biological and environmental factors can contribute to marine organism composition, such as depth. However, much remains unknown about microbial communities' taxonomic and functional features in different water layer depths. Here, we performed a metagenomic analysis of 76 publicly available samples from the Tara Ocean Project, distributed in 8 collection stations located in tropical or subtropical regions, and sampled from three layers of depth (surface water layer-SRF, deep chlorophyll maximum layer-DCM, and mesopelagic zone-MES). The SRF and DCM depth layers are similar in abundance and diversity, while the MES layer presents greater diversity than the other layers. Diversity clustering analysis shows differences regarding the taxonomic content of samples. At the domain level, bacteria prevail in most samples, and the MES layer presents the highest proportion of archaea among all samples. Taken together, our results indicate that the depth layer influences microbial sample composition and diversity.

2.
Funct Integr Genomics ; 21(3-4): 523-531, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34279742

RESUMO

Essential genes are so-called because they are crucial for organism perpetuation. Those genes are usually related to essential functions to cellular metabolism or multicellular homeostasis. Deleterious alterations on essential genes produce a spectrum of phenotypes in multicellular organisms. The effects range from the impairment of the fertilization process, disruption of fetal development, to loss of reproductive capacity. Essential genes are described as more evolutionarily conserved than non-essential genes. However, there is no consensus about the relationship between gene essentiality and gene age. Here, we identified essential genes in five model eukaryotic species (Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster, Caenorhabditis elegans, and Mus musculus) and estimate their evolutionary ancestry and their network properties. We observed that essential genes, on average, are older than other genes in all species investigated. The relationship of network properties and gene essentiality convey with previous findings, showing essential genes as important nodes in biological networks. As expected, we also observed that essential orthologs shared by the five species evaluated here are old. However, all the species evaluated here have a specific set of young essential genes not shared among them. Additionally, these two groups of essential genes are involved with distinct biological functions, suggesting two sets of essential genes: (i) a set of old essential genes common to all the evaluated species, regulating basic cellular functions, and (ii) a set of young essential genes exclusive to each species, which perform specific essential functions in each species.


Assuntos
Caenorhabditis elegans , Drosophila melanogaster , Evolução Molecular , Genes Essenciais , Saccharomyces cerevisiae , Schizosaccharomyces , Animais , Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Camundongos , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética
3.
Front Genet ; 10: 791, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552095

RESUMO

Lead poisoning effects are wide and include nervous system impairment, peculiarly during development, leading to neural damage. Lead interaction with calcium and zinc-containing metalloproteins broadly affects cellular metabolism since these proteins are related to intracellular ion balance, activation of signaling transduction cascades, and gene expression regulation. In spite of lead being recognized as a neurotoxin, there are gaps in knowledge about the global effect of lead in modulating the transcription of entire cellular systems in neural cells. In order to investigate the effects of lead poisoning in a systemic perspective, we applied the transcriptogram methodology in an RNA-seq dataset of human embryonic-derived neural progenitor cells (ES-NP cells) treated with 30 µM lead acetate for 26 days. We observed early downregulation of several cellular systems involved with cell differentiation, such as cytoskeleton organization, RNA, and protein biosynthesis. The downregulated cellular systems presented big and tightly connected networks. For long treatment times (12 to 26 days), it was possible to observe a massive impairment in cell transcription profile. Taking the enriched terms together, we observed interference in all layers of gene expression regulation, from chromatin remodeling to vesicle transport. Considering that ES-NP cells are progenitor cells that can originate other neural cell types, our results suggest that lead-induced gene expression disturbance might impair cells' ability to differentiate, therefore influencing ES-NP cells' fate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA