Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 578: 390-401, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32535421

RESUMO

PdNi electrocatalysts supported on carbon were used as anode materials for methane oxidation in alkaline direct methane fuel cells (ADMEFCs). The electrocatalysts were successfully synthesized by the NaBH4 reduction method. X-ray diffraction measurements showed the formation of non-alloyed Pd in the face- centered cubic (FCC) structure for all materials and formation of NiO and Ni(OH)2 species. TEM images showed that the metal particles are well dispersed on the support with small agglomeration regions. Information about the surface structure of the catalyst were obtained by Raman spectra, mainly confirming the presence of Ni(OH)2. The species observed by DEMS, that is, methanol (m/z = 32), CO2 (m/z = 44) and potassium formate (m/z = 84) were confirmed by FTIR, which also showed the presence of a high amount of carbonate in the methane oxidation products of the ADMEFC with Pd50Ni50/C as the anode catalyst. Tests in ADMEFCs showed that the dependence of the maximum power density on nickel content in the catalysts goes through a maximum value of 13.5 µW cm-2 at 50 at% Ni. Moreover, the amount of produced methanol decreases with increasing Ni content in the PdNi/C catalysts. Both these results can be explained by the enhanced methanol oxidation in the presence of nickel.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 199: 349-355, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29635179

RESUMO

DNA nucleotides are used as a molecular recognition system on electrodes modified to be applied in the detection of various diseases, but immobilization mechanisms, as well as, charge transfers are not satisfactorily described in the literature. An electrochemical and spectroscopic study was carried out to characterize the molecular groups involved in the direct immobilization of DNA structures on the surface of nanostructured TiO2 with the aim of evaluating the influence of the geometrical aspects. X-ray photoelectron spectroscopy at O1s and P2p core levels indicate that immobilization of DNA samples occurs through covalent (POTi) bonds. X-ray absorption spectra at the Ti2p edge reinforce this conclusion. A new species at 138.5eV was reported from P2p XPS spectra analysis which plays an important role in DNA-TiO2 immobilization. The POTi/OTi ratio showed that quantitatively the DNA immobilization mechanism is dependent on their geometry, becoming more efficient for plasmid ds-DNA structures than for PCR ds-DNA structures. The analysis of photoabsorption spectra at C1s edge revealed that the molecular groups that participate in the C1s→LUMO electronic transitions have different pathways in the charge transfer processes at the DNA-TiO2 interface. Our results may contribute to additional studies of immobilization mechanisms understanding the influence of the geometry of different DNA molecules on nanostructured semiconductor and possible impact to the charge transfer processes with application in biosensors or aptamers.


Assuntos
Técnicas Biossensoriais/métodos , Eletrodos , Ácidos Nucleicos Imobilizados/química , Espectroscopia Fotoeletrônica/métodos , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA