Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cancer Res Clin Oncol ; 150(8): 390, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39154308

RESUMO

OBJECTIVES: Chemoprevention can be a treatment for potentially malignant lesions (PMLs). We aimed to evaluate whether artemisinin (ART) and cisplatin (CSP) are associated with apoptosis and immunogenic cell death (ICD) in vitro, using oral leukoplakia (OL) and oral squamous cell carcinoma (OSCC) cell lines, and whether these compounds prevent OL progression in vivo. METHODS: Normal keratinocytes (HaCat), Dysplastic oral cells (DOK), and oral squamous cell carcinoma (SCC-180) cell lines were treated with ART, CSP, and ART + CSP to analyze cytotoxicity, genotoxicity, cell migration, and increased expression of proteins related to apoptosis and ICD. Additionally, 41 mice were induced with OL using 4NQO, treated with ART and CSP, and their tongues were histologically analyzed. RESULTS: In vitro, CSP and CSP + ART showed dose-dependent cytotoxicity and reduced SCC-180 migration. No treatment was genotoxic, and none induced expression of proteins related to apoptosis and ICD; CSP considerably reduced High-mobility group box-1 (HMGB-1) protein expression in SCC-180. In vivo, there was a delay in OL progression with ART and CSP treatment; however, by the 16th week, only CSP prevented progression to OSCC. CONCLUSION: Expression of proteins related to ICD and apoptosis did not increase with treatments, and CSP was shown to reduce immunogenic pathways in SCC-180, while reducing cell migration. ART did not prevent the malignant progression of OL in vivo; CSP did despite significant adverse effects.


Assuntos
Apoptose , Artemisininas , Movimento Celular , Cisplatino , Progressão da Doença , Leucoplasia Oral , Neoplasias Bucais , Artemisininas/farmacologia , Animais , Leucoplasia Oral/patologia , Leucoplasia Oral/tratamento farmacológico , Humanos , Cisplatino/farmacologia , Camundongos , Neoplasias Bucais/patologia , Neoplasias Bucais/tratamento farmacológico , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proteína HMGB1/metabolismo , Antineoplásicos/farmacologia
2.
J Biomater Sci Polym Ed ; 35(10): 1493-1510, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38569077

RESUMO

In recent years, there has been a notable surge of interest in hybrid materials within the biomedical field, particularly for applications in bone repair and regeneration. Ceramic-polymeric hybrid scaffolds have shown promising outcomes. This study aimed to synthesize bioactive glass (BG-58S) for integration into a bioresorbable polymeric matrix based on PDLLA, aiming to create a bioactive scaffold featuring stable pH levels. The synthesis involved a thermally induced phase separation process followed by lyophilization to ensure an appropriate porous structure. BG-58S characterization revealed vitreous, bioactive, and mesoporous structural properties. The scaffolds were analyzed for morphology, interconnectivity, chemical groups, porosity and pore size distribution, zeta potential, pH, in vitro degradation, as well as cell viability tests, total protein content and mineralization nodule production. The PDLLA scaffold displayed a homogeneous morphology with interconnected macropores, while the hybrid scaffold exhibited a heterogeneous morphology with smaller diameter pores due to BG-58S filling. The hybrid scaffold also demonstrated a pH buffering effect on the polymer surface. In addition to structural characteristics, degradation tests indicated that by incorporating BG-58S modified the acidic degradation of the polymer, allowing for increased total protein production and the formation of mineralization nodules, indicating a positive influence on cell culture.


Assuntos
Regeneração Óssea , Cerâmica , Vidro , Poliésteres , Alicerces Teciduais , Cerâmica/química , Alicerces Teciduais/química , Regeneração Óssea/efeitos dos fármacos , Vidro/química , Porosidade , Poliésteres/química , Materiais Biocompatíveis/química , Concentração de Íons de Hidrogênio , Humanos , Sobrevivência Celular/efeitos dos fármacos , Teste de Materiais
3.
J Biomed Mater Res B Appl Biomater ; 112(2): e35380, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38348496

RESUMO

Zirconia implants are gaining attention as a viable alternative to titanium implants due to their comparable osseointegration development, improved soft tissue adaptation, and enhanced aesthetics. An encouraging avenue for improving zirconia implant properties involves the potential application of bioactive coatings to their surfaces. These coatings have shown potential for inducing hydroxyapatite formation, crucial for bone proliferation, and improving implant mechanical properties. This study aimed to evaluate the effect of coating zirconia implants with two bioactive glasses, 45S5 and BioK, on osteogenesis in vitro and osseointegration in vivo. Zirconia samples and implants were prepared using Zpex zirconia powder and blocks, respectively. The samples were divided into three groups: polished zirconia (ZRC), zirconia coated with 45S5 bioglass (Z + 45S5), and zirconia coated with BioK glass (Z + BK). Coatings were applied using a brush and sintered at 1200°C. Chemical analysis of the coatings was carried out using x-ray diffraction and Fourier Transform Infrared Spectroscopy. Surface topography and roughness were characterized using scanning electron microscopy and a roughness meter. In vitro experiments used mesenchymal cells from Wistar rat femurs, and the coated zirconia implants were found to promote cell viability, protein synthesis, alkaline phosphatase activity, and mineralization, indicating enhanced osteogenesis. In vivo experiments with 18 rats showed positive results for bone formation and osseointegration through histological and histomorphometric analysis and a push-out test. The findings indicate that bioactive glass coatings have the potential to improve cell differentiation, bone formation, and osseointegration in zirconia implants.


Assuntos
Cerâmica , Implantes Dentários , Próteses e Implantes , Zircônio , Ratos , Animais , Ratos Wistar , Osseointegração , Propriedades de Superfície , Titânio/farmacologia , Titânio/química , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Microscopia Eletrônica de Varredura
4.
J Biomed Mater Res B Appl Biomater ; 112(1): e35315, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589245

RESUMO

The development of bioactive membranes with bone repair properties is great interest in the field of tissue engineering. In this study, we aimed to fabricate and characterize a composite membrane composed of sol-gel synthesized bioceramics and electrospun polycaprolactone (PCL) fibers for bone tissue regeneration applications. The bioceramics were prepared using the sol-gel method with nitrate (N) and chloride (CL) as precursors. PCL and bioceramic solutions were electrospun to obtain ultrafine fiber mats. Raman spectroscopy, x-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to characterize the materials. The results showed that both chlorinated and non-chlorinated bioceramics contained NBOs (non-bridge bonds) and crystallized the α-wollastonite phase, with the chlorinated version doing so at lower temperatures. In vitro tests were performed to evaluate cytotoxicity, cell adhesion, and mineralized matrix formation on the membranes. The composite membranes showed improved cell viability and promoted mineralization nodules formation. This study presents a promising approach for the development of bioactive membranes for bone tissue engineering, with potential applications in bone regeneration therapies.


Assuntos
Poliésteres , Engenharia Tecidual , Poliésteres/química , Engenharia Tecidual/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Osso e Ossos , Alicerces Teciduais/química , Materiais Biocompatíveis/química
5.
J Biomed Mater Res B Appl Biomater ; 111(11): 1956-1965, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37482895

RESUMO

This study aimed to evaluate the Carbon Fiber obtained from PAN textile and cotton fiber in their different forms of presentation: non-activated carbon fiber felt (NACFF), activated carbon fiber felt (ACFF), silver activated carbon fiber felt (Ag-ACFF), and activated carbon fiber tissue (ACFT), to obtain scaffolds as a potential material with properties related to the synthetic bone graft. Characterization tests performed: surface wettability, traction, swelling, and in vivo tests: evaluation of the inflammatory response by implanting the materials in the subcutaneous tissue of 14 Wistar rats, evaluation of collagen fibers by picrosirius red staining and assessment of toxicity in the following organs: heart, spleen, liver, and kidney. In the wettability test, NACFF and ACFT were hydrophobic (θ124° and 114°), ACFF and Ag-ACFF were hydrophilic. For maximum stress, ACFF was more resistant (2.983 ± 1.059) p < .05. In the swelling test, the Ag-ACFF and ACFF groups showed the highest absorption percentage for the PBS solution and distilled water (p < .001). The organs showed no signs of acute systemic toxicity. The implant regions showed mild to moderate inflammatory infiltrate at 7 and 21 days. Only the ACFT group did not show the maturation of type I collagen fibers in 21 days. Through the conducted analyses, the ACFT shows little potential to be indicated as a possible scaffold. Therefore NACFF, ACFF, and Ag-ACFF have the potential to be considered scaffolds due to the following characteristics presented: good absorption rate, hydrophilicity, and non-toxic.

6.
J Funct Biomater ; 14(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36826892

RESUMO

With the increase in the population's life expectancy, there has also been an increase in the rate of osteoporosis, which has expanded the search for strategies to regenerate bone tissue. The ultrasonic sonochemical technique was chosen for the functionalization of the 45S5 bioglass. The samples after the sonochemical process were divided into (a) functionalized bioglass (BG) and (b) functionalized bioglass with 10% teriparatide (BGT). Isolated mesenchymal cells (hMSC) from femurs of ovariectomized rats were differentiated into osteoblasts and submitted to in vitro tests. Bilateral ovariectomy (OVX) and sham ovariectomy (Sham) surgeries were performed in fifty-five female Wistar rats. After a period of 60 days, critical bone defects of 5.0 mm were created in the calvaria of these animals. For biomechanical evaluation, critical bone defects of 3.0 mm were performed in the tibias of some of these rats. The groups were divided into the clot (control) group, the BG group, and the BGT group. After the sonochemical process, the samples showed modified chemical topographic and morphological characteristics, indicating that the surface was chemically altered by the functionalization of the particles. The cell environment was conducive to cell adhesion and differentiation, and the BG and BGT groups did not show cytotoxicity. In addition, the experimental groups exhibited characteristics of new bone formation with the presence of bone tissue in both periods, with the BGT group and the OVX group statistically differing from the other groups (p < 0.05) in both periods. Local treatment with the drug teriparatide in ovariectomized animals promoted positive effects on bone tissue, and longitudinal studies should be carried out to provide additional information on the biological performance of the mutual action between the bioglass and the release of the drug teriparatide.

7.
J Biomed Mater Res B Appl Biomater ; 111(1): 140-150, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35852036

RESUMO

The objective was to synthesize and characterize fine polycaprolactone (PCL) fibers associated with a new 58S bioglass obtained by the precipitated sol-gel route, produced by the electrospinning process in order to incorporate therapeutic ions (Mg and Li). In PCL/acetone solutions were added 7% pure bioglass, bioglass doped with Mg(NO3 )2 and Li2 CO3 and were subjected to electrospinning process. The fibers obtained were characterized morphologically, chemically and biologically. The results showed the presence of fine fibers at the nanometric scale and with diameters ranging from 0.67 to 1.92 µm among groups. Groups containing bioglass showed particles both inside and on the surface of the fibers. The components of the polymer, bioglass and therapeutic ions were present in the fibers produced. The produced fibers showed cell viability and induced the formation of mineralization nodules. It was observed the applicability of that methodology in making an improved biomaterial, which adds the osteoinductive properties of the bioglass to PCL and to those of therapeutic ions, applicable to guided bone regeneration.


Assuntos
Poliésteres , Alicerces Teciduais , Alicerces Teciduais/química , Poliésteres/química , Cerâmica/química , Materiais Biocompatíveis/química , Íons , Engenharia Tecidual/métodos
8.
J Biomed Mater Res B Appl Biomater ; 111(1): 151-160, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35950464

RESUMO

The development of nanoscale biomaterials associated with polymers has been growing over the years, due to their important structural characteristics for applications in biological systems. The present study aimed to produce and test polymeric scaffolds composed of polylactic acid (PLA) fibers associated with a 58S bioglass doped with therapeutic ions for use in tissue engineering. Three 58S Bioglass was obtained by the sol-gel route, pure and doped with 5% strontium and cobalt ions. Solutions of 7% PLA was used as control and added the three different bioglass, 4% of 58S bioglass (PLA-BG), 4% bioglass-doped strontium (PLA-BGSr) and 4% bioglass-doped cobalt (PLA-BGCo). Scaffolds were produced through electrospinning process, and was characterized chemical and morphologically. The in vitro tests were performed using mesenchymal cells cultures from femurs of nine rats, grown in osteogenic supplemented total culture medium. After osteoblastic differentiation induction cell viability, alkaline phosphatase activity, total protein content quantification, and visualization of mineralization nodule tests were performed. Analysis of normal distribution used the Shapiro-Wilk test (nanofibers diameter and biological assay). Data were compared using the Kruskal-Wallis nonparametric test (p = 0.05). The bioglasses produced proved to be free of nitrate, chlorinated and nano-sized, with effective incorporation of therapeutic ions in their structure. All materials showed cell viability (>70%), total protein production, and alkaline phosphatase activity. It was possible to develop polylactic acid scaffolds associated with 58S bioglass doped with therapeutic ions without cytotoxicity. Scaffolds characteristics appear to sustain its application in bone tissue engineering.


Assuntos
Estrôncio , Engenharia Tecidual , Ratos , Animais , Estrôncio/farmacologia , Alicerces Teciduais/química , Fosfatase Alcalina/metabolismo , Cobalto/farmacologia , Poliésteres/química , Osteogênese , Íons
9.
Clin Oral Investig ; 25(5): 2925-2937, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33033921

RESUMO

OBJECTIVES: The present study aims to evaluate two protocols of pulsed electromagnetic field (PEMF) on osseointegration and establish one that addresses ideal parameters for its use in dentistry, especially in the optimization of the implants osseointegration process. MATERIALS AND METHODS: Sixty male rats (Wistar) were allocated into three experimental groups: control (GC), test A (GTA, 3 h exposed), and test B (GTB, 1 h exposed). All animals received titanium implants in both tibias, and PEMF application (15 Hz, ± 1 mT, 5 days/week) occurred only in the test groups. They were euthanized at 03, 07, 21, and 45 days after PEMF therapy. Removal torque, histomorphometric measurements, three-dimensional radiographic evaluation, and in vitro biological assay analyses were performed. RESULTS: GTB showed better results compared with GTA in removal torque tests, in bone volume and bone mineral density, cell viability, total protein content, and mineralization nodules (p < 0.05). GTA showed better performance in trabecular bone thickness and cell proliferation compared with GTB (p < 0.05), especially at osseointegration early periods. In the histomorphometric analysis and number of trabeculae, there were no differences in the test groups. CONCLUSION: PEMF as a biostimulator was effective in optimizing the events in bone tissue that lead to osseointegration, especially when applied for a shorter time and in the initial periods of bone healing. CLINICAL RELEVANCE: The PEMF therapy is an effective alternative method for optimizing bone healing.


Assuntos
Implantes Dentários , Osseointegração , Animais , Campos Eletromagnéticos , Masculino , Ratos , Ratos Wistar , Tíbia , Titânio
10.
Int J Implant Dent ; 6(1): 65, 2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33099690

RESUMO

BACKGROUND: An effective biomaterial for bone replacement should have properties to avoid bacterial contamination and promote bone formation while inducing rapid cell differentiation simultaneously. Bone marrow stem cells are currently being investigated because of their known potential for differentiation in osteoblast lineage. This makes these cells a good option for stem cell-based therapy. We have aimed to analyze, in vitro, the potential of pure titanium (Ti), Ti-35Nb-7Zr alloy (A), niobium (Nb), and zirconia (Zr) to avoid the microorganisms S. aureus (S.a) and P. aeruginosa (P.a). Furthermore, our objective was to evaluate if the basic elements of Ti-35Nb-7Zr alloy have any influence on bone marrow stromal cells, the source of stem cells, and observe if these metals have properties to induce cell differentiation into osteoblasts. METHODS: Bone marrow stromal cells (BMSC) were obtained from mice femurs and cultured in osteogenic media without dexamethasone as an external source of cell differentiation. The samples were divided into Ti-35Nb-7Zr alloy (A), pure titanium (Ti), Nb (niobium), and Zr (zirconia) and were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). After predetermined periods, cell interaction, cytotoxicity, proliferation, and cell differentiation tests were performed. For monotypic biofilm formation, standardized suspensions (106 cells/ml) with the microorganisms S. aureus (S.a) and P. aeruginosa (P.a) were cultured for 24 h on the samples and submitted to an MTT test. RESULTS: All samples presented cell proliferation, growth, and spreading. All groups presented cell viability above 70%, but the alloy (A) showed better results, with statistical differences from Nb and Zr samples. Zr expressed higher ALP activity and was statistically different from the other groups (p < 0.05). In contrast, no statistical difference was observed between the samples as regards mineralization nodules. Lower biofilm formation of S.a and P.a. was observed on the Nb samples, with statistical differences from the other samples. CONCLUSION: Our results suggest that the basic elements present in the alloy have osteoinductive characteristics, and Zr has a good influence on bone marrow stromal cell differentiation. We also believe that Nb has the best potential for reducing the formation of microbial biofilms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA