Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 38(9): 150, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776270

RESUMO

In recent years, the increasing concern about human health well-being has strongly boosted the search for natural alternatives that can be used in different fields, especially in biomedicine. This has put microalgae-based products in evidence since they contain many bioactive compounds, of which polysaccharides are attractive due to the diverse physicochemical properties and new or improved biological roles they play. Polysaccharides from microalgae, specially exopolysaccharides, are critically important for market purposes because they can be used as anti-inflammatory, immunomodulatory, anti-glycemic, antitumor, antioxidant, anticoagulant, antilipidemic, antiviral, antibacterial, and antifungal agents. Therefore, to obtain higher productivity and competitiveness of these naturally available compounds, the cultivation parameters and the extraction/purification processes must be better optimized in order to bring perspectives for the exploitation of products in commercial and clinical practice. In this sense, the objective of the present review is to elucidate the potential biomedical applications of microalgae-derived polysaccharides. A closer look is taken at the main polysaccharides produced by microalgae, methods of extraction, purification and structural determination, biological activities and their applications, and current status.


Assuntos
Microalgas , Antioxidantes/farmacologia , Humanos , Microalgas/química , Polissacarídeos
2.
Food Res Int ; 157: 111469, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761700

RESUMO

This study aimed to investigate the impact of different microalgal matrices on the bioaccessibility and uptake by Caco-2 cells of carotenoids and chlorophylls. In this way, the microalgal ingredients/products (whole dry biomass [WDB], whole ultrasonicated paste [WUP], and liposoluble pigment emulsion [LPE]) obtained from Chlorella vulgaris and Arthrospira platensis were submitted to in vitro simulated digestion. Apical uptake of pigments in micelles generated during the simulated digestion by Caco-2 human intestinal cells was determined. The influence of simulated digestion on carotenoid and chlorophyll stability and bioaccessibility was assessed by HPLC-PDA-MS/MS and the carotenoids and chlorophylls' bioaccessibility and cellular uptake were shown to be boosted according to the matrix (LPE > WUP > WDB). Our findings showed that Chlorella vulgaris and Arthrospira platensis could be considered in formulations when carotenoids and chlorophylls are the target molecules in the ingredients/products.


Assuntos
Chlorella vulgaris , Microalgas , Células CACO-2 , Carotenoides , Clorofila , Digestão , Humanos , Spirulina , Espectrometria de Massas em Tandem
3.
Data Brief ; 29: 105182, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32055665

RESUMO

This brief data article refers to the previous exploration of Scenedesmus obliquus and Phormidium autumnale biomass about the possibility of using these microalgae species as an unconventional functional food. Data on chemical composition, fatty acids, volatile compounds, and carotenoid profiles were determined. In parallel, are provided the antioxidant capacity (reducing capacity - RC and reactive oxygen species deactivation - ORAC) of aqueous, lipophilic, and carotenoid extracts isolated from microalgae biomass. Both species have similar compounds in their biomass. However, S. obliquus was statistically different with a lower saturated fatty acid (STF) followed by higher mono (MUFA) and polyunsaturated (PUFA) content, also showed higher antioxidant potential for acetone extract and isolated carotenoids. On the other hand, P. autumnale aqueous extract showed high RC and ORAC. The significance of the experimental data was determined using the t-test (p < 0.05) based on the Statistica 7.0 software. These findings led us to explore the microalgae S. obliquus in an in vivo experimental model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA