Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Insects ; 14(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36975973

RESUMO

By increasing plant diversity in agroecosystems, it has been proposed that one can enhance and stabilize ecosystem functioning by increasing natural enemies' diversity. Food web structure determines ecosystem functioning as species at different trophic levels are linked in interacting networks. We compared the food web structure and composition of the aphid- parasitoid and aphid-hyperparasitoid networks in two differentially managed plum orchards: plums with inter-rows of oats as a cover crop (OCC) and plums with inter-rows of spontaneous vegetation (SV). We hypothesized that food web composition and structure vary between OCC and SV, with network specialization being higher in OCC and a more complex food web composition in SV treatment. We found a more complex food web composition with a higher species richness in SV compared to OCC. Quantitative food web metrics differed significantly among treatments showing a higher generality, vulnerability, interaction evenness, and linkage density in SV, while OCC presented a higher degree of specialization. Our results suggest that plant diversification can greatly influence the food web structure and composition, with bottom-up effects induced by plant and aphid hosts that might benefit parasitoids and provide a better understanding of the activity, abundance, and interactions between aphids, parasitoids, and hyperparasitoids in plum orchards.

2.
Oecologia ; 200(3-4): 425-440, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36287254

RESUMO

All species interact in complex antagonistic or mutualistic networks that may be driven by turnover in species composition due to spatiotemporal environmental filtering. Therefore, studying differences in insect communities along environmental gradients may improve our understanding of the abiotic and biotic factors that shape the structure of trophic networks. Parasitoids are interesting models to do so, due to their intimate eco-evolutionary relationship with their hosts. We explored the differences in cereal aphid-parasitoid food webs during the winter among nine localities in Chilean central-south valley, along a gradient of 1200 km from north (29° S) to south (40° S). We hypothesized that diapause incidence would increase in the coldest areas, resulting in a lower number of parasitoid species active during the winter. Consequently, network specialization, generality, and vulnerability indexes should increase with decreasing latitude, which implies fewer and more weakly connected links per parasitoid species through an increased fraction of basal host species. Based on the severity of winter, three areas along the explored gradient were distinguished, but clustering did not follow a clear north-south latitudinal gradient. Instead, few differences were observed in overwintering strategies, with very low levels of diapause in all localities, and no major differences in food-web composition. The major differences along the gradient were the relative abundances of the different aphid, parasitoid and hyperparasitoid species, with higher levels of spatial and temporal variation observed for the less abundant species. Our results provide a better understanding of the activity and abundance of aphid parasitoids during winter in relation to climatic conditions.


Assuntos
Afídeos , Animais , Cadeia Alimentar , Chile , Interações Hospedeiro-Parasita , Estações do Ano
3.
Insects ; 11(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575581

RESUMO

The use of cover crops can promote the abundance and early arrival of populations of natural enemies. Cereal cover crops between orchards rows could encourage the early arrival of the parasitoid Aphidius platensis, as they offer alternative winter hosts (e.g., Rhopalosiphum padi), enhancing the control of Myzus persicae in spring. However, the preference for and suitability of the alternative host must be addressed beforehand. To evaluate the potential of this strategy, we assessed host preference using behavioural choice tests, as well as no-choice tests measuring fitness traits, when developing on both host species. One source field for each aphid population from the above hosts was chosen. There was a clear choice for R. padi compared to M persicae, independently of the source, probably due to more defensive behaviours of M. persicae (i.e., kicks and escapes). Nevertheless, both aphid species were suitable for parasitoids' development. The female progeny developed on R. padi were larger in size, irrespective of their origin. According to our results, in peach orchards with cereals sown between peach trees during the autumn, where we expect when R. padi populations will no longer be available during spring, A. platensis should be able to switch to M. persicae.

4.
Sci Rep ; 9(1): 19641, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873169

RESUMO

When a guild of species exploit the same limited resources, interspecific competition induces the exclusion of inferior competitors, in which case, interspecific recognition mechanisms are needed. Here, we address resource partitioning and interspecific competition among three main solitary parasitoid species attacking the same host resource, the aphid Sitobion avenae in wheat fields. Optimal host acceptance models predict that parasitoid species should prefer attacking unparasitized hosts when they are available in order to maximize their fitness, as already parasitized hosts are less valuable for laying eggs, especially for inferior competitors. Therefore, we expected the level of competition (multiparasitism) in the field to increase at low host density. By using a combination of taxonomical (determination) and molecular (PCR-based) approaches, we assessed the species of all parasitoid adults and immature stages within aphid hosts. Our results demonstrate that, early in the season, the multiparasitism rates were low, whereas they were high in the mid-late season, corresponding to an aphid density decrease over time. Moreover, parasitoid species could not have been exploiting host resources randomly and the better competitor, Aphidius ervi, seemed to be foraging preferentially on hosts already parasitized by the inferior competitor A. rhopalosiphi, even when unparasitized hosts were still available. This could be due to differences in their host detection capability, as species with a narrow host range may be better at detecting their hosts in comparison with species with a greater host range, such as A. ervi, with a greater host range within the guild. Our study suggests differences in the host exploitation of two prevalent parasitoid species through the main period of aphid colonization, which still allowed the coexistence of a third inferior competitor (A. rhopalosiphi) within the assemblage, in spite of some negative interactions (multiparasitism) and redundancies.


Assuntos
Afídeos/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Modelos Biológicos , Triticum/parasitologia , Animais , Feminino , Masculino , Oviposição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA