Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 14(5): 1681-1690, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28291360

RESUMO

An effective short interfering RNA (siRNA) delivery system protects the siRNA from degradation, facilitates its cellular uptake, and promotes its release into the cytoplasm. Local administration of siRNA presents advantages over systemic administration, such as the possibility to use lower doses and allow local and sustained release. In this context, in situ solidifying organogels based on monoglycerides (MO), polyethylenimine (PEI), propylene glycol (PG) and tris buffer are an attractive strategy for intratumoral delivery of siRNA. In this study, precursor fluid formulation (PFF) composed of MO/PEI/PG/tris buffer at 7.85:0.65:76.5:15 (w/w/w/w) was used to deliver siRNA to tumor cells. The internal structure of the gel obtained from PFF was characterized using small angle X-ray scattering (SAXS). In addition, its ability to complex siRNA, protect it from degradation, and functionally deliver it to tumor cells was investigated. Moreover, in vivo gel formation following intratumoral injection was evaluated. The gel formed in excess water from PFF was found to comprise a mixture of hexagonal and cubic phases. The system was able to complex high amounts of siRNA, protect it from degradation, promote siRNA internalization, and induce gene silencing in vitro in a variety of tumor cell lines. Moreover, a gel formed in situ following intratumoral injection in a murine xenograft model. In conclusion, PFF is a potential delivery system for local and sustained delivery of siRNA to tumor tissue after intratumoral administration.


Assuntos
Inativação Gênica/fisiologia , Cristais Líquidos/química , Monoglicerídeos/química , Polietilenoimina/química , Propilenoglicol/química , RNA Interferente Pequeno/genética
2.
Eur J Pharm Sci ; 74: 103-17, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25917525

RESUMO

The development of delivery systems able to complex and release siRNA into the cytosol is essential for therapeutic use of siRNA. Among the delivery systems, local delivery has advantages over systemic administration. In this study, we developed and characterized non-viral carriers to deliver siRNA locally, based on polyethylenimine (PEI) as gene carrier, and a self-assembling drug delivery system that forms a gel in situ. Liquid crystalline formulations composed of monoglycerides (MO), PEI, propylene glycol (PG) and 0.1M Tris buffer pH 6.5 were developed and characterized by polarized light microscopy, Small Angle X-ray Scattering (SAXS), for their ability to form inverted type liquid crystalline phases (LC2) in contact with excess water, water absorption capacity, ability to complex with siRNA and siRNA release. In addition, gel formation in vivo was determined by subcutaneous injection of the formulations in mice. In water excess, precursor fluid formulations rapidly transformed into a viscous liquid crystalline phase. The presence of PEI influences the liquid crystalline structure of the LC2 formed and was crucial for complexing siRNA. The siRNA was released from the crystalline phase complexed with PEI. The release rate was dependent on the rate of water uptake. The formulation containing MO/PEI/PG/Tris buffer at 7.85:0.65:76.5:15 (w/w/w/w) complexed with 10 µM of siRNA, characterized as a mixture of cubic phase (diamond-type) and inverted hexagonal phase (after contact with excess water), showed sustained release for 7 days in vitro. In mice, in situ gel formation occurred after subcutaneous injection of the formulations, and the gels were degraded in 30 days. Initially a mild inflammatory process occurred in the tissue surrounding the gel; but after 14 days the tissue appeared normal. Taken together, this work demonstrates the rational development of an in situ gelling formulation for local release of siRNA.


Assuntos
Celulite (Flegmão)/prevenção & controle , Técnicas de Transferência de Genes/efeitos adversos , Polietilenoimina/química , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Terapêutica com RNAi/efeitos adversos , Substâncias Viscoelásticas/química , Animais , Celulite (Flegmão)/induzido quimicamente , Celulite (Flegmão)/imunologia , Celulite (Flegmão)/patologia , Feminino , Géis , Glicerídeos/efeitos adversos , Glicerídeos/química , Injeções Subcutâneas , Camundongos Endogâmicos BALB C , Monoglicerídeos/efeitos adversos , Monoglicerídeos/química , Polietilenoimina/efeitos adversos , Propilenoglicol/efeitos adversos , Propilenoglicol/química , RNA Interferente Pequeno/efeitos adversos , RNA Interferente Pequeno/química , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Solubilidade , Tela Subcutânea/efeitos dos fármacos , Tela Subcutânea/imunologia , Tela Subcutânea/patologia , Substâncias Viscoelásticas/efeitos adversos , Viscosidade , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA