Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Environ Microbiome ; 19(1): 48, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020395

RESUMO

Seasonal floodplains in the Amazon basin are important sources of methane (CH4), while upland forests are known for their sink capacity. Climate change effects, including shifts in rainfall patterns and rising temperatures, may alter the functionality of soil microbial communities, leading to uncertain changes in CH4 cycling dynamics. To investigate the microbial feedback under climate change scenarios, we performed a microcosm experiment using soils from two floodplains (i.e., Amazonas and Tapajós rivers) and one upland forest. We employed a two-factorial experimental design comprising flooding (with non-flooded control) and temperature (at 27 °C and 30 °C, representing a 3 °C increase) as variables. We assessed prokaryotic community dynamics over 30 days using 16S rRNA gene sequencing and qPCR. These data were integrated with chemical properties, CH4 fluxes, and isotopic values and signatures. In the floodplains, temperature changes did not significantly affect the overall microbial composition and CH4 fluxes. CH4 emissions and uptake in response to flooding and non-flooding conditions, respectively, were observed in the floodplain soils. By contrast, in the upland forest, the higher temperature caused a sink-to-source shift under flooding conditions and reduced CH4 sink capability under dry conditions. The upland soil microbial communities also changed in response to increased temperature, with a higher percentage of specialist microbes observed. Floodplains showed higher total and relative abundances of methanogenic and methanotrophic microbes compared to forest soils. Isotopic data from some flooded samples from the Amazonas river floodplain indicated CH4 oxidation metabolism. This floodplain also showed a high relative abundance of aerobic and anaerobic CH4 oxidizing Bacteria and Archaea. Taken together, our data indicate that CH4 cycle dynamics and microbial communities in Amazonian floodplain and upland forest soils may respond differently to climate change effects. We also highlight the potential role of CH4 oxidation pathways in mitigating CH4 emissions in Amazonian floodplains.

2.
Sci Total Environ ; 945: 173846, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38871316

RESUMO

Soil bacterial communities play a critical role in shaping soil stability and formation, exhibiting a dynamic interaction with local climate and soil depth. We employed an innovative DNA separation method to characterize microbial assemblages in low-biomass environments such as deserts and distinguish between intracellular DNA (iDNA) and extracellular DNA (eDNA) in soils. This approach, combined with analyses of physicochemical properties and co-occurrence networks, investigated soil bacterial communities across four sites representing diverse climatic gradients (i.e., arid, semi-arid, Mediterranean, and humid) along the Chilean Coastal Cordillera. The separation method yielded a distinctive unimodal pattern in the iDNA pool alpha diversity, increasing from arid to semi-arid climates and decreasing in humid environments, highlighting the rapid feedback of the iDNA community to increasing soil moisture. In the arid region, harsh surface conditions restrict bacterial growth, leading to peak iDNA abundance and diversity occurring in slightly deeper layers than the other sites. Our findings confirmed the association between specialist bacteria and ecosystem-functional traits. We observed transitions from Halomonas and Delftia, resistant to extreme arid environments, to Class AD3 and the genus Bradyrhizobium, associated with plants and organic matter in humid environments. The distance-based redundancy analysis (dbRDA) analysis revealed that soil pH and moisture were the key parameters that influenced bacterial community variation. The eDNA community correlated slightly better with the environment than the iDNA community. Soil depth was found to influence the iDNA community significantly but not the eDNA community, which might be related to depth-related metabolic activity. Our investigation into iDNA communities uncovered deterministic community assembly and distinct co-occurrence modules correlated with unique bacterial taxa, thereby showing connections with sites and key environmental factors. The study additionally revealed the effects of climatic gradients and soil depth on living and dead bacterial communities, emphasizing the need to distinguish between iDNA and eDNA pools.


Assuntos
Bactérias , Clima , Microbiota , Microbiologia do Solo , Solo , Chile , Bactérias/classificação , Solo/química , Ecossistema , Monitoramento Ambiental , Biodiversidade
3.
Braz J Microbiol ; 55(3): 2345-2354, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38913252

RESUMO

The Yanomami are one of the oldest indigenous tribes in the Amazon and are direct descendants of the first people to colonize South America 12,000 years ago. They are located on the border between Venezuela and Brazil, with the Venezuelan side remaining uncontacted. While they maintain a hunter-gatherer society, they are currently experiencing contact with urbanized populations in Brazil. The human gut microbiota of traditional communities has become the subject of recent studies due to the Westernization of their diet and the introduction of antibiotics and other chemicals, which have affected microbial diversity in indigenous populations, thereby threatening their existence. In this study, we preliminarily characterized the diversity of the gut microbiota of the Yanomami, a hunter-gatherer society from the Amazon, experiencing contact with urbanized populations. Similarly, we compared their diversity with the population in Manaus, Amazonas. A metabarcoding approach of the 16 S rRNA gene was carried out on fecal samples. Differences were found between the two populations, particularly regarding the abundance of genera (e.g., Prevotella and Bacteroides) and the higher values of the phyla Bacteroidetes over Firmicutes, which were significant only in the Yanomami. Some bacteria were found exclusively in the Yanomami (Treponema and Succinivibrio). However, diversity was statistically equal between them. In conclusion, the composition of the Yanomami gut microbiota still maintains the profile characteristic of a community with a traditional lifestyle. However, our results suggest an underlying Westernization process of the Yanomami microbiota when compared with that of Manaus, which must be carefully monitored by authorities, as the loss of diversity can be a sign of growing danger to the health of the Yanomami.


Assuntos
Bactérias , Fezes , Microbioma Gastrointestinal , RNA Ribossômico 16S , Urbanização , Brasil , Humanos , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fezes/microbiologia , Indígenas Sul-Americanos , Filogenia , Biodiversidade , Masculino , Adulto
4.
Braz J Microbiol ; 55(3): 2815-2825, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38696039

RESUMO

Integrated production systems have been proposed as alternative to sustainable land use. However, information regarding bacterial community structure and diversity in soils of integrated Crop-Livestock-Forest systems remains unknown. We hypothesize that these integrated production systems, with their ecological intensification, can modulate the soil bacterial communities. However, Yet, it remains unclear whether the modulation of bacterial biodiversity is solely attributable to the complexity of root exudates or if seasonal climatic events also play a contributory role. The objective of this study is to evaluate the impact of monoculture and integrated production systems on bacterial soil communities in the Amazon Biome, Brazil. Three monoculture systems, each with a single crop over time and space (Eucalyptus (E), Crop Soybean (C), Pasture (P)), and three integrated systems with multiple crops over time and space (ECI, PI, ECPI) were evaluated, along with a Native forest serving as a reference area. Soil samples were collected at a depth of 0-10 cm during both the wet and dry seasons. Bacterial composition was determined using Illumina high-throughput sequencing of the 16 S rRNA gene. The sequencing results revealed the highest abundance classified under the phyla Firmicutes, Actinobacteria, and Proteobacteria. The Firmicutes correlated with the Crop in the rainy period and in the dry only ECPI and Forest. For five classes corresponding to the three phyla, the Crop stood out with the greatest fluctuations in their relative abundance compared to other production systems. In cluster analysis by genus during the rainy season, only Forest and ECPI showed no similarity with the other production systems. However, in the dry season, both were grouped with Forest and EPI. Therefore, the bacterial community in integrated systems proved to be sensitive to management practices, even with only two years of use. ECPI demonstrated the greatest similarity in bacterial structure to the Native forest, despite just two years of experimental deployment. Crop exhibited fluctuations in relative abundance in both seasons, indicating an unsustainable production system with changes in soil microbial composition. These findings support our hypothesis that integrated production systems and their ecological intensification, as exemplified by ECPI, can indeed modulate soil bacterial communities.


Assuntos
Bactérias , Biodiversidade , Microbiologia do Solo , Brasil , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Produtos Agrícolas/microbiologia , Estações do Ano , Microbiota , Solo/química , Produção Agrícola/métodos , Florestas , Filogenia , Agricultura
5.
Microorganisms ; 12(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38674668

RESUMO

Bacillus and related genera are among the most important contaminants in the pharmaceutical production environment, and the identification of these microorganisms at the species level assists in the investigation of sources of contamination and in preventive and corrective decision making. The aim of this study was to evaluate three methodologies for the characterization of endospore-forming aerobic bacterial strains isolated from a pharmaceutical unit in Rio de Janeiro, Brazil. MALDI-TOF MS was performed using MALDI Biotyper® and VITEK® MS RUO systems, and complete 16S rRNA gene sequencing was performed using the Sanger methodology. The results showed the prevalence of the genera Bacillus (n = 9; 36.0%), Priestia (n = 5; 20.0%), and Paenibacillus (n = 4; 16.0%). Three (20.0%) strains showed <98.7% of DNA sequencing similarity on the EzBioCloud Database, indicating possible new species. In addition, the reclassification of Bacillus pseudoflexus to the genus Priestia as Priestia pseudoflexus sp. nov. is proposed. In conclusion, 16S rRNA and MALDI TOF/MS were not sufficient to identify all strains at the species level, and complementary analyses were necessary.

6.
Res Vet Sci ; 172: 105249, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579633

RESUMO

The effect of salinomycin sodium alone and in combination with functional oils on performance and microbiota of broiler infected Eimeria were evaluated. 512 broilers were randomly assigned to 4 treatments (8 replicates, 16 birds/pen): a Control group (any additives); Ionophore group: salinomycin supplementation at 66 ppm (SS66); Ionophore +0.075% Functional oil (FO) group (SS66 + FO supplementation at 750 ppm); and Ionophore +0.10% FO group (SS66 + FO supplementation at 1000 ppm). At 14 days of age, birds were gavaged with 1 mL of a saline solution containing sporulated oocysts of E. tenella, E. acervulina and E. maxima. Performance indices were measured weekly. At 28 days, intestinal content was collected for microbiota analysis. Broilers of Control group presented the worst performance indices. Broilers of Ionophore + FO (0.075% and 0.10%) groups exhibited a higher BW at 28 days of age. The supplementation of Ionophore +0.075% FO resulted in a higher relative proportion of Firmicutes and a lower proportion of Actinobacteria in the ileum-jejunum. Lactobacillaceae was the dominant family in the jejunal, and ileal microbiotas of broilers fed diets supplemented with Ionophore, Ionophore +0.075% FO and Ionophore +0.10% FO. The supplementation of ionophore yielded higher numbers of Lactobacillaceae, Enterobactereaceae and Cloritridiaceae in the cecal. Ionophore associated with FO controlled the Lactobacillaceae, Enterobactereaceae and Cloritridiaceae families present in the cecum. Therefore, the combination of salinomycin with functional oil showed synergistic effect on performance and modulation of intestinal microbiota of broilers challenged with Eimeria.


Assuntos
Ração Animal , Galinhas , Coccidiose , Dieta , Suplementos Nutricionais , Eimeria , Microbioma Gastrointestinal , Policetídeos de Poliéter , Doenças das Aves Domésticas , Piranos , Animais , Galinhas/crescimento & desenvolvimento , Piranos/farmacologia , Piranos/administração & dosagem , Coccidiose/veterinária , Coccidiose/tratamento farmacológico , Coccidiose/parasitologia , Microbioma Gastrointestinal/efeitos dos fármacos , Eimeria/efeitos dos fármacos , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/tratamento farmacológico , Ração Animal/análise , Dieta/veterinária , Distribuição Aleatória , Ionóforos/farmacologia , Ionóforos/administração & dosagem , Coccidiostáticos/farmacologia , Coccidiostáticos/administração & dosagem , Masculino
7.
World J Microbiol Biotechnol ; 40(4): 119, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429532

RESUMO

Soil bacteria-fungi interactions are essential in the biogeochemical cycles of several nutrients, making these microbes major players in agroecosystems. While the impact of the farming system on microbial community composition has been extensively reported in the literature, whether sustainable farming approaches can promote associations between bacteria and fungi is still unclear. To study this, we employed 16S, ITS, and 18S DNA sequencing to uncover how microbial interactions were affected by conventional and organic farming systems on maize crops. The Bray-Curtis index revealed that bacterial, fungal, and arbuscular mycorrhizal fungi communities were significantly different between the two farming systems. Several taxa known to thrive in healthy soils, such as Nitrosophaerales, Orbiliales, and Glomus were more abundant in the organic farming system. Constrained ordination revealed that the organic farming system microbial community was significantly correlated with the ß-glucosidase activity, whereas the conventional farming system microbial community significantly correlated with soil pH. Both conventional and organic co-occurrence interkingdom networks exhibited a parallel node count, however, the former had a higher number of edges, thus being denser than the latter. Despite the similar amount of fungal nodes in the co-occurrence networks, the organic farming system co-occurrence network exhibited more than 3-fold the proportion of fungal taxa as keystone nodes than the conventional co-occurrence network. The genera Bionectria, Cercophora, Geastrum, Penicillium, Preussia, Metarhizium, Myceliophthora, and Rhizophlyctis were among the fungal keystone nodes of the organic farming system network. Altogether, our results uncover that beyond differences in microbial community composition between the two farming systems, fungal keystone nodes are far more relevant in the organic farming system, thus suggesting that bacteria-fungi interactions are more frequent in organic farming systems, promoting a more functional microbial community.


Assuntos
Ascomicetos , Micorrizas , Agricultura Orgânica , Micorrizas/genética , Agricultura , Solo/química , Bactérias/genética
8.
Microorganisms ; 12(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38399709

RESUMO

One practice for handling farm dairy effluent (DE) comprises recycling them to the soil with the challenge of balancing the tradeoff associated with environmental pollution through nutrient and microorganism loading. This study investigated seasonal bacterial community composition, diversity, abundance, and pathogenic indicators in untreated (Raw) and lagoon-stabilized (Lagoon) DE. The correlation between bacterial profiles and DE physicochemical characteristics was also analyzed. Pathogen-indicator bacteria were studied by enumerating viable counts and the bacterial community structure by 16S rRNA gene sequence analysis. Lagoon storage effectively reduced total solids (64%), suspended solids (77%), organic carbon (40%), and total nitrogen (82%), along with total coliforms, Escherichia coli, and enterococci. However, this efficiency was compromised in winter. Lagoon and Raw sample bacterial communities presented different compositions, with several environmental variables correlating to microbial community differences. Lagoon-treated DE exhibited the most diverse bacterial community, dominated by Firmicutes (40%), Proteobacteria (30%), and Bacteroidota (7.6%), whereas raw DE was mainly composed of Firmicutes (76%). Regardless of the season, dominant genera included Trichococcus, Romboutsia, Corynebacterium, and Paeniclostridium. Overall, the study emphasizes the importance of lagoon treatment for DE stabilization, showcasing its role in altering bacterial community composition and mitigating environmental risks associated with pathogens and nutrients, particularly in summer.

9.
Metabolites ; 14(2)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38393013

RESUMO

Obesity is a public health problem with a growing prevalence worldwide. In Mexico, it is estimated that one out of three adults suffer from obesity. In these patients, the intestinal microbiota (IM) undergoes pathological changes that are associated with a dysbiotic state; however, the microbiota profile of adult subjects with obesity from western Mexico has not been described. To assess this, fecal samples were obtained from 65 participants (Obese = 38; Control = 27). The microbial composition was characterized by 16S rRNA amplicon sequencing. The IM of the group with obesity revealed a clear decrease in richness and diversity (p < 0.001), as well as a significant increase in proinflammatory bacterial groups, mainly genera belonging to the Negativicutes class, Escherichia/Shigella, and Prevotella. Likewise, an increase in short-chain fatty acid-producing bacteria was found, especially the genus Lachnoclostridium. Additionally, PICRUSt2 analysis showed a depletion of vitamin B9 metabolism and an increase in saccharolytic pathways. The IM of patients with obesity possesses a dysbiotic, proinflammatory environment, possibly contributing to lipogenesis and adiposity. Thus, assessing the IM will allow for a better understanding of the pathophysiology of metabolic diseases of high prevalence, such as obesity. These findings are described for the first time in the adult population of western Mexico.

10.
Braz J Microbiol ; 55(1): 201-213, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38099979

RESUMO

The extensive distribution of Xylopia aethiopica across the continent of Africa has firmly established its medicinal value in diverse disease management. While its phytochemistry is well established, the diversity, molecular, biochemical, and antimicrobial-biosynthetic characterizations of culturable bacterial endophytes residing in fruits of X. aethiopica have not been studied previously. Additionally, danger continues to loom the global health care and management due to antibiotic resistance; hence, the discovery of microbial natural products especially from endophytes could offer a lasting solution to the quest for novel antimicrobial compounds. In this study, we isolated two bacterial endophytes Serratia sp. XAFb12 and Pseudomonas sp. XAFb13 from fresh X. aethiopica fruit. The 16S rRNA gene sequencing, Vitex biochemical test, Gram staining, and 16S rRNA gene analysis were used to confirm their phenotypic and genotypic profiles. Phylogenetic tree analysis reveals their divergence in a separate branch, indicating their uniqueness. The crude extract of both strains showed inhibition against all tested bacterial and fungal pathogens. The minimum inhibition concentration (MIC) ranged from 2.5 to 10%. Chemical analysis of the crude extracts using gas chromatography-mass spectroscopy (GC-MS) revealed the most abundant compounds to be hydrocinnamic acid, 2-piperidinone, 5-isopropylidene-3,3-dimethyl-dihydrofuran-2-one, and diethyl trisulfide. The bacterial endophytes linked to X. aethiopica were described in this study for the first time in relation to clinically significant pathogens. Our findings imply that crude extracts of the endophytic bacteria from X. aethiopica could be potentially employed as antibiotics. Hence, it is crucial to characterize the active ingredient in further detail for future pharmaceutical applications.


Assuntos
Xylopia , Xylopia/química , Filogenia , RNA Ribossômico 16S/genética , Pseudomonas/genética , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Endófitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA