Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1234592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731818

RESUMO

Introduction: Inosine monophosphate dehydrogenase 1 (IMPDH1) is a critical enzyme in the retina, essential for the correct functioning of photoreceptor cells. Mutations in IMPDH1 have been linked to autosomal dominant retinitis pigmentosa subtype 10 (adRP-10), a genetic eye disorder. Some of these mutations such as the Asp226Asn (D226N) lead to the assembly of large filamentous structures termed cytoophidia. D226N also gives IMPDH1 resistance to feedback inhibition by GDP/GTP. This study aims to emulate the adRP-10 condition with a long-term expression of IMPDH1-D226N in vitro and explore cytoophidium assembly and cell survival. We also assessed whether the introduction of an additional mutation (Y12C) to disrupt the cytoophidium has an attenuating effect on the toxicity caused by the D226N mutation. Results: Expression of IMPDH1-D226N in HEp-2 cells resulted in cytoophidium assembly in ∼70% of the cells, but the presence of the Y12C mutation disrupted the filaments. Long-term cell survival was significantly affected by the presence of the D226N mutation, with a decrease of ∼40% in the cells expressing IMPDH1-D226N when compared to IMPDH1-WT; however, survival was significantly recovered in IMPDH1-Y12C/D226N, with only a ∼10% decrease when compared to IMPDH1-WT. On the other hand, the IMPDH1 expression level in the D226N-positive cells was <30% of that of the IMPDH1-WT-positive cells and only slightly higher in the Y12C/D226N, suggesting that although cell survival in Y12C/D226N was recovered, higher expression levels of the mutated IMPDH1 were not tolerated by the cells in the long term. Conclusion: The IMPDH1-D226N effect on photoreceptor cell survival may be the result of a sum of problems: nucleotide unbalance plus a toxic long-life cytoophidium, supported by the observation that by introducing Y12C in IMPDH1 the cytoophidium was disrupted and cell survival significantly recovered, but not the sensibility to GDP/GTP regulation since higher expression levels of IMPDH1-D226N were not tolerated.

2.
Biochim Biophys Acta ; 1841(1): 97-107, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24120921

RESUMO

The nuclear receptor PPARγ acts as a key modulator of lipid metabolism, inflammation and pathogenesis in BCG-infected macrophages. However, the molecular mechanisms involved in PPARγ expression and functions during infection are not completely understood. Here, we investigate signaling pathways triggered by TLR2, the involvement of co-receptors and lipid rafts in the mechanism of PPARγ expression, lipid body formation and cytokine synthesis in macrophages during BCG infection. BCG induces NF-κB activation and increased PPARγ expression in a TLR2-dependent manner. Furthermore, BCG-triggered increase of lipid body biogenesis was inhibited by the PPARγ antagonist GW9662, but not by the NF-κB inhibitor JSH-23. In contrast, KC/CXCL1 production was largely dependent on NF-κB but not on PPARγ. BCG infection induced increased expression of CD36 in macrophages in vitro. Moreover, CD36 co-immunoprecipitates with TLR2 in BCG-infected macrophages, suggesting its interaction with TLR2 in BCG signaling. Pretreatment with CD36 neutralizing antibodies significantly inhibited PPARγ expression, lipid body formation and PGE2 production induced by BCG. Involvement of CD36 in lipid body formation was further confirmed by decreased BCG-induced lipid body formation in CD36 deficient macrophages. Similarly, CD14 and CD11b/CD18 blockage also inhibited BCG-induced lipid body formation, whereas TNF-α synthesis was not affected. Disruption of rafts recapitulates the latter result, inhibiting lipid body formation, but not TNF-α synthesis in BCG-infected macrophages. In conclusion, our results suggest that CD36-TLR2 cooperation and signaling compartmentalization within rafts, divert host response signaling through PPARγ-dependent and NF-κB-independent pathways, leading to increased macrophage lipid accumulation and down-modulation of macrophage response.


Assuntos
Quimiocina CXCL1/biossíntese , Metabolismo dos Lipídeos , Mycobacterium bovis , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Tuberculose , Fator de Necrose Tumoral alfa/biossíntese , Anilidas/farmacologia , Animais , Antígeno CD11b/biossíntese , Antígeno CD11b/genética , Antígenos CD18/biossíntese , Antígenos CD18/genética , Antígenos CD36/biossíntese , Antígenos CD36/genética , Quimiocina CXCL1/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Receptores de Lipopolissacarídeos/biossíntese , Receptores de Lipopolissacarídeos/genética , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Microdomínios da Membrana/genética , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/patologia , Camundongos , Camundongos Knockout , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , PPAR gama/antagonistas & inibidores , PPAR gama/biossíntese , PPAR gama/genética , Fenilenodiaminas/farmacologia , Receptor 2 Toll-Like/genética , Tuberculose/metabolismo , Tuberculose/patologia , Tuberculose/veterinária , Fator de Necrose Tumoral alfa/genética
3.
Theriogenology ; 81(2): 326-31, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24210669

RESUMO

In vitro-produced embryos store high lipid content in cytoplasmic lipid droplets (LD), and reduction or removal of LD has been demonstrated to improve freeze-thaw viability. The Perilipin Adipophilin Tail-interacting Protein of 47 kD (PAT) family of proteins is involved in the formation and regulation of LD in many cell types, but their presence has not been addressed either in cattle oocytes or preimplantation embryos. Therefore, this study aimed to detect the expression of PAT family transcripts (Perilipin-2 [PLIN2] and Perilipin-3 [PLIN3]) in immature and in vitro-matured (IVM) oocytes, and in in vitro-produced embryos at the stages of two to four cells, eight to 16 cells, morulae (MO), and blastocyst (BL). The expression of PLIN3 was downregulated in response to IVM, and PLIN2 was comparatively more expressed than PLIN3 in IVM oocytes (P < 0.001). During the early stages of embryo development, PLIN2 expression reached its peak at the MO stage (P < 0.001) and decreased again at the BL stage. In contrast, PLIN3 was expressed in low levels during the earliest stages of development, slightly upregulated at the MO stage (P < 0.05), and greatly increased its expression at the BL stage (15-fold; P < 0.001). PLIN3 was comparatively more expressed than PLIN2 during embryo culture in most stages analyzed (P < 0.05), except in eight- to 16-cell embryos. These results indicate that PLIN2 might be involved in the maintenance of lipid stocks necessary to support embryo development after fertilization of IVM oocytes. Also, we hypothesize that PLIN3 is the main PAT protein responsible for stabilization of LD formed in consequence of the acute lipid load seen during embryo development. We confirmed the presence of both PLIN2 and PLIN3 proteins in BL at Day 7 using immunocytochemistry: these PAT proteins colocalized with LD stained with BODIPY. PLIN3 seemed to be more ubiquitously spread out in the cytoplasm than PLIN2, consistent with the pattern seen in adipocytes. These findings suggest that both elderly (bigger) and newly formed (smaller) LD, positive for PLIN2 and PLIN3 respectively, coexist in blastocysts. To our knowledge this is the first report showing that transcripts of the PAT family are present in cattle oocytes and embryos.


Assuntos
Bovinos/embriologia , Desenvolvimento Embrionário , Proteínas de Membrana/metabolismo , Oócitos/crescimento & desenvolvimento , Proteínas de Transporte Vesicular/metabolismo , Animais , Fertilização in vitro/veterinária , Perilipina-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA