Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Methods Mol Biol ; 2827: 155-163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985268

RESUMO

This chapter presents the methodological approach for the in vitro propagation of Agave angustifolia "espadin," the base material to produce mezcal. The protocol used in each stage of the crop is addressed in detail, considering the changes in the culture medium and the characteristics of the plant material at each stage. The importance of integrated management between the multiplication and growth phase, as part of the in vitro selection strategy, is mentioned.


Assuntos
Agave , Meios de Cultura , Agave/crescimento & desenvolvimento , Meios de Cultura/química , Aclimatação , Brotos de Planta/crescimento & desenvolvimento
2.
Molecules ; 29(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39065006

RESUMO

Inulin is a carbohydrate that belongs to fructans; due to its health benefits, it is widely used in the food and pharmaceutical industries. In this research, cabuya (Agave americana) was employed to obtain inulin by pulsed electric field-assisted extraction (PEFAE) and FTIR analysis confirmed its presence. The influence of PEFAE operating parameters, namely, electric field strength (1, 3 and 5 kV/cm), pulse duration (0.1, 0.2 and 0.5 ms), number of pulses (10,000, 20,000 and 40,000) and work cycle (20, 50 and 80%) on the permeabilization index and energy expenditure were tested. Also, once the operating conditions for PEFAE were set, the temperature for conventional extraction (CE) and PEFAE were defined by comparing extraction kinetics. The cabuya meristem slices were exposed to PEFAE to obtain extracts that were quantified, purified and concentrated. The inulin was isolated by fractional precipitation with ethanol to be characterized. The highest permeabilization index and the lowest energy consumption were reached at 5 kV/cm, 0.5 ms, 10,000 pulses and 20%. The same extraction yield and approximately the same amount of inulin were obtained by PEFAE at 60 °C compared to CE at 80 °C. Despite, the lower amount of inulin obtained by PEFAE in comparison to CE, its quality was better because it is mainly constituted of inulin of high average polymerization degree with more than 38 fructose units. In addition, TGA analyses showed that inulin obtained by PEFAE has a lower thermal degradation rate than the obtained by CE and to the standard.


Assuntos
Agave , Inulina , Inulina/química , Inulina/isolamento & purificação , Agave/química , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade , Temperatura
3.
Trop Anim Health Prod ; 56(6): 215, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004693

RESUMO

This study evaluated the effect of cobiotic (CO) composed of organic fructans powder of Agave tequilana and turmeric powder of Curcuma longa L. as an alternative of antibiotic growth promoters (AGPs) on growth performance, blood parameters, intestinal pH, oxidative stress, and cytokines serum levels of broiler chickens. A total of 135 one-day-old Ross 308 broilers distributed to five experimental groups, which included starter or finisher standard diets without AGPs (CON), CON + 0.25 COLI-ZIN g/kg feed (AGP), CON + 0.1 g Agave fructans/kg feed (AF), CON + 0.5 g turmeric powder/kg feed (TP) and CON + 0.1 g AF + 0.5 g TP /kg feed (CO), for 49 days. AF followed by TP, decreased feed intake, obtaining the best FCR. AGP increased the heterophil-lymphocyte ratio compared to other groups. CO significantly decreased the pH of the cecal content. AF increased IL-10 levels, while TP decreased it. AF decreased the IL-1ß levels. The present study showed that including a cobiotic based on AF and TP or components separately in a broilers diet improved growth performance, modified intestinal and cecum pH, and stimulated the immune system, which suggests CO as a safe alternative to AGP.


Assuntos
Agave , Ração Animal , Galinhas , Dieta , Suplementos Nutricionais , Frutanos , Estresse Oxidativo , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/imunologia , Galinhas/sangue , Frutanos/administração & dosagem , Frutanos/farmacologia , Ração Animal/análise , Suplementos Nutricionais/análise , Estresse Oxidativo/efeitos dos fármacos , Agave/química , Dieta/veterinária , Citocinas/sangue , Citocinas/metabolismo , Masculino , Curcuma/química , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos
4.
Environ Res ; 258: 119422, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38942261

RESUMO

The aim of the present research is to show the development of a sustainability-oriented lab that teaches adsorption concepts in a virtual environment based on the premise "learning-through-play". Kinetic results in the virtual environment are contrasted to those obtained experimentally when diverse adsorbents prepared from Agave Bagasse (Raw Fibers, Hydrothermal Fibers, and Activated Fibers) were synthesized. Comparison between virtual and real-life experiments involving removal of methylene blue in solution showed that a pseudo-first-order model could describe adsorption kinetics satisfactorily. The study is complemented with a characterization of the adsorbents through SEM, nitrogen adsorption isotherms, FTIR and Raman. In addition, the environmental impact of the synthesis of adsorbents was evaluated through well-known methodologies (GAPI, NEMI, and Eco-Scale), which agree that raw fibers are the most eco-friendly material. This research provides an exciting opportunity to advance our knowledge on developing new technologies for teaching in engineering and to compliment real-life practices that consider environmental impacts with virtual experiments.


Assuntos
Poluentes Químicos da Água , Adsorção , Cinética , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Universidades , Azul de Metileno/química , Laboratórios , Purificação da Água/métodos , Celulose/química , Modelos Químicos , Conservação dos Recursos Naturais/métodos
5.
Molecules ; 29(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38930808

RESUMO

In this study, a beverage made from a combination of Agave sap (AS) and prickly pear juice (PPJ) was analyzed for its nutrients and bioactive and potentially health-promoting compounds. The beverage was evaluated for its ability to act as an antioxidant, regulate glycemic properties, and undergo gut bacterial fermentation in vitro. The major mono- and oligosaccharides present in the beverage were galacturonic acid (217.74 ± 13.46 mg/100 mL), rhamnose (227.00 ± 1.58 mg/100 mL), and fructose (158.16 ± 8.86 mg/mL). The main phenolic compounds identified were protocatechuic acid (440.31 ± 3.06 mg/100 mL) and catechin (359.72 ± 7.56 mg/100 mL). It was observed that the beverage had a low glycemic index (<40) and could inhibit digestive carbohydrases. The combination of ingredients also helped to reduce gas production during AS fermentation from 56.77 cm3 to 15.67 cm3. The major SCFAs produced during fermentation were butyrate, acetate, and propionate, with valerate being produced only during the late fermentation of the AS. This beverage is rich in bioactive compounds, such as polyphenols and dietary fiber, which will bring health benefits when consumed.


Assuntos
Agave , Antioxidantes , Sucos de Frutas e Vegetais , Agave/química , Sucos de Frutas e Vegetais/análise , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/análise , Fermentação , Hidroxibenzoatos/análise , Polifenóis/análise , Polifenóis/química , Pyrus/química , Fenóis/análise , Fenóis/química , Ramnose/análise , Ramnose/química , Catequina/análise , Catequina/química , Catequina/análogos & derivados , Ácidos Hexurônicos
6.
Plants (Basel) ; 13(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38794441

RESUMO

Agave tequilana Weber var. Blue is used as the primary raw material in tequila production due to its fructans (inulin) content. This study evaluates the formulation of a plant-growth-promoting bacteria (PGPB) consortium (Pseudomonas sp. and Shimwellia sp.) to increase sugars in A. tequilana under field conditions. A total of three doses were tested: low (5 L ha-1), medium (10 L ha-1), and high (15 L ha-1), with a cellular density of 1 × 108 CFU mL-1 and one control treatment (without application). Total reducing sugars (TRS), inulin, sucrose, glucose, fructose, and plant growth were measured in agave plants aged 4-5 years at 0 (T0), 3 (T3), 6 (T6), and 12 (T12) months. Yield was recorded at T12. The TRS increased by 3%, and inulin by 5.3% in the high-dose treatment compared to the control at T12. Additionally, a low content of sucrose, glucose, and fructose (approximately 1%) was detected. At T12, the weight of agave heads increased by 31.2% in the medium dose and 22.3% in the high dose compared to the control. The high dose provided a higher inulin content. The A. tequilana plants were five years old and exhibited growth comparable to the standards for 6-7-year-old plants. This study demonstrates a sustainable strategy for tequila production, optimizing the use of natural resources and enhancing industry performance through increased sugar content and yield.

7.
Gels ; 10(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38786216

RESUMO

Agavins are reserve carbohydrates found in agave plants; they present texture-modifying properties and prebiotic capacity by increasing the viability of the intestinal microbiota. Through its hydrolysis, agave syrup (AS) can be obtained and can be used as a sweetener in food matrices. The objective of this work was to evaluate the effect of the variation in the content of agavins and AS on the physical, structural, and viability properties of Saccharomyces boulardii encapsulates incorporated into gelatin gummies. An RSM was used to obtain an optimized formulation of gelatin gummies. The properties of the gel in the gummy were characterized by a texture profile analysis and Aw. The humidity and sugar content were determined. A sucrose gummy was used as a control for the variable ranges. Alginate microcapsules containing S. boulardii were added to the optimized gummy formulation to obtain a synbiotic gummy. The viability of S. boulardii and changes in the structure of the alginate gel of the microcapsules in the synbiotic gummy were evaluated for 24 days by image digital analysis (IDA). The agavins and agave syrup significantly affected the texture properties (<1 N) and the Aw (>0.85). The IDA showed a change in the gel network and an increase in viability by confocal microscopy from day 18. The number of pores in the gel increased, but their size decreased with an increase in the number of S. boulardii cells. Agavins and cells alter the structure of capsules in gummies without affecting their viability.

8.
Heliyon ; 10(8): e29149, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38638968

RESUMO

In recent decades, natural fibers have emerged as an alternative to synthetic fibers due to their renewable nature, lower environmental impact, and comparable strength properties. Agave bagasse, a byproduct of agave juice extraction in Mexico, stands out for its potential in various industrial applications, notably biocomposite production. Bagasse is rich in cellulose, along with hemicellulose and lignin. Cellulose is the most suitable to be converted into valuable products, and it is versatile, renewable, and biodegradable. An effective pre-treatment is crucial to enrich its fraction. This study aims to determine the optimal pre-treatment conditions for the agave bagasse. Three different pre-treatments were tested, acid (H2SO4), enzymatic (Cellic® HTec2 enzymatic preparation), and sequence of acid-enzymatic (sulfuric acid and Cellic® HTec2), to determine which pre-treatment got the optimal cellulose fraction increase. The acid pre-treatment was conducted over three time ranges (5, 10, and 15 min) at different acid concentrations (1%, 1.5%, and 2%). Enzymatic reactions were conducted over 24 h, testing three different enzyme concentrations (1.5%, 3%, 4.5%). The sequential pre-treatment utilized the optimal conditions derived from the acid experiments (1.5% H2SO4 for 10 min), followed by enzymatic reactions carried out over three different durations (6, 12, and 24 h). The findings revealed that a 1.5% acid concentration applied for 10 min was the most efficient pre-treatment method. This pre-treatment resulted in a 1.9-fold increase in the cellulose fraction while reducing hemicellulose content by 30%. The hemicellulose reduction was confirmed through Fourier Transform IR spectroscopy (FTIR) analysis, complemented by scanning electron microscopy (SEM) observations highlighting physical alterations in the fiber structure. Furthermore, thermogravimetric analysis (TGA) demonstrated improved thermal stability, suggesting potential use in biocomposites. Future research should evaluate the environmental impact of optimized pre-treatment methods for agave bagasse.

9.
Mitochondrial DNA B Resour ; 9(4): 536-540, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655148

RESUMO

Agave durangensis commonly known as agave cenizo, is an endemic Agave species in Mexico used for mescal production, yet its taxonomic delimitation is still controversial. This study aimed to enhance taxonomic clarity by characterizing its chloroplast genome. Chloroplast DNA was isolated from 2-year-old A. durangensis leaves. The complete chloroplast genome size was 156,441 bp, comprising a large single-copy region (LSC), a pair of inverted repeat regions (IR), and a small single-copy region (SSC). Annotation revealed 87 protein-coding genes, 38 tRNAs, and 8 rRNAs, with notable gene inversions. Phylogenetic analysis suggests, A. durangensis forms a separate lineage within the Agave genus.

10.
Molecules ; 29(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474649

RESUMO

The leaves of Agave angustifolia Haw. are the main agro-waste generated by the mezcal industry and are becoming an important source of bioactive compounds, such as phenolic compounds, that could be used in the food and pharmaceutical industries. Therefore, the extraction and identification of these phytochemicals would revalorize these leaf by-products. Herein, maceration and supercritical carbon dioxide (scCO2) extractions were optimized to maximize the phenolic and flavonoid contents and the antioxidant capacity of vegetal extracts of A. angustifolia Haw. In the maceration process, the optimal extraction condition was a water-ethanol mixture (63:37% v/v), which yielded a total phenolic and flavonoid content of 27.92 ± 0.90 mg EAG/g DL and 12.85 ± 0.53 µg QE/g DL, respectively, and an antioxidant capacity of 32.67 ± 0.91 (ABTS assay), 17.30 ± 0.36 (DPPH assay), and 13.92 ± 0.78 (FRAP assay) µM TE/g DL. Using supercritical extraction, the optimal conditions for polyphenol recovery were 60 °C, 320 bar, and 10% v/v. It was also observed that lower proportions of cosolvent decreased the polyphenol extraction more than pressure and temperature. In both optimized extracts, a total of 29 glycosylated flavonoid derivatives were identified using LC-ESI-QTof/MS. In addition, another eight novel compounds were identified in the supercritical extracts, showing the efficiency of the cosolvent for recovering new flavonoid derivatives.


Assuntos
Agave , Antioxidantes/química , Polifenóis/química , Fenóis/química , Flavonoides/química , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA