Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Total Environ ; 950: 175317, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39111448

RESUMO

The latent potential of active ingredients derived from agro-industrial waste remains largely untapped and offers a wealth of unexplored resources. While these types of materials have applications in various fields, their ability to benefit human health needs to be further explored and investigated. This systematic review was conducted to systematically evaluate non-clinical studies that have investigated the biological effects of fractions, extracts and bioactive compounds from agro-industrial wastes and their potential therapeutic applications. Articles were selected via PubMed, Embase and Medline using the descriptors (by-products[title/abstract]) AND (agro-industrial[title/abstract]). The systematic review was registered in the International Prospective Register of Systematic Reviews (Prospero) under the number CRD42024491021. After a detailed analysis based on inclusion and exclusion criteria, a total of 38 articles were used for data extraction and discussion of the results. Information was found from in vitro and in vivo experiments investigating a variety of residues from the agro-industry. The studies investigated peels, pomace/bagasse, pulp, seeds, aerial parts, cereals/grains and other types of waste. The most studied activities include mainly antioxidant and anti-inflammatory effects, but other activities such as antimicrobial, cytotoxic, antiproliferative, antinociceptive, hypoglycemic, antihyperglycemic and anticoagulant effects have also been described. Finally, the studies included in this review demonstrate the potential of agro-industrial waste and can drive future research with a focus on clinical application.


Assuntos
Agricultura , Resíduos Industriais , Animais , Humanos , Agricultura/métodos , Antioxidantes
2.
Bioprocess Biosyst Eng ; 47(10): 1633-1645, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38970656

RESUMO

This work aimed to define strategies to increase the bioproduction of 6 pentyl-α-pyrone (bioaroma). As first strategy, fermentations were carried out in the solid state, with agro-industrial residues: Mauritia flexuosa Liliopsida. and Manihot esculenta Crantz in isolation, conducting them with different nutrient solutions having Trichoderma harzianum as a fermenting fungus. Physicochemical characterizations, centesimal composition, lignocellulosic and mineral content and antimicrobial activity were required. Fermentations were conducted under different humidification conditions (water, nutrient solution without additives and nutrient solutions with glucose or sucrose) for 9 days. Bioaroma was quantified by gas chromatography, assisted by solid-phase microextraction. The results showed the low production of this compound in fermentations conducted with sweet cassava (around 6 ppm (w/w)). The low bioproduction with sweet cassava residues can probably be related to its starch-rich composition, homogeneous substrate, and low concentration of nutrients. Already using buriti, the absence of aroma production was detected. Probably the presence of silicon and high lignin content in buriti minimized the fungal activity, making it difficult to obtain the aroma of interest. Given the characteristics presented by the waste, a new strategy was chosen: mixing waste in a 1:1 ratio. This fermentation resulted in the production of 156.24 ppm (w/w) of aroma using the nutrient solution added with glucose. This combination, therefore, promoted more favorable environment for the process, possibly due to the presence of fermentable sugars from sweet cassava and fatty acids from the buriti peel, thus proving the possibility of an increase of around 2500% in the bioproduction of coconut aroma.


Assuntos
Manihot , Pironas , Manihot/química , Manihot/metabolismo , Pironas/metabolismo , Pironas/química , Cocos/química , Odorantes/análise , Hypocreales/metabolismo , Fermentação
3.
Bioprocess Biosyst Eng ; 47(7): 1081-1094, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38739268

RESUMO

Wheat bran is one of the most abundant by-products from grain milling, which can be used as substrate for solid-state fermentation (SSF) to obtain enzymes able to convert this agro-industrial waste into glucose syrup, which in turn can be applied for the production of different food products. The present study aimed to determine centesimal composition of wheat bran, obtain enzymatic extract that converts wheat bran into wheat glucose syrup (WGS), produce rice flakes cereal bars (RFCB), and evaluate their nutritional composition and the presence of functional compounds, as well as their antioxidant potential. Determination of centesimal composition of wheat bran demonstrated its nutritional potential. Enzymatic extract was obtained and it converted wheat bran into WGS, which were applied to rice flakes producing RFCB. These cereal bars proved to be a source of dietary fiber (1.8 g) and soluble protein (7.2 g) while RCFB produced with corn glucose syrup did not present these nutritional components. In addition, RFCB produced with WGS showed polyphenolic compounds, among them flavonoids, which exhibited antioxidant activity by DPPH and ABTS radical scavenging (47.46% and 711.89 µM Trolox Equivalent/g, respectively), and iron ion reduction (71.70 µM Trolox equivalent/g). Final product showed a decrease in caloric value and sodium content. Therefore, the present study showed that the bioprocess of SSF yields a nutritional, ecological, and functional food product, which might be of great interest for food industry, adding nutritional and functional value to a well-stablished product.


Assuntos
Antioxidantes , Fibras na Dieta , Grão Comestível , Fermentação , Glucose , Glucose/metabolismo , Antioxidantes/metabolismo , Grão Comestível/química , Oryza/química , Triticum/metabolismo , Triticum/química
4.
ACS Appl Mater Interfaces ; 16(15): 19391-19410, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38591172

RESUMO

Nowadays, bone systems have a series of consequences that compromise the quality of life mainly due to wear and decreased bioactivity, generally in elderly people and children. In this context, the combination of montmorillonite (MMT-NPs) in a vitreous system such as nanobioglass facilitates the adsorption of biomolecules on the surface and within the interlamellar spaces, enabling the entry of ions by a cation exchange process focusing on increasing the rate of bone formation. This work aims to synthesize and characterize an eco-friendly hybrid reinforcement containing MMT-NPs with nanobioglass doped with magnesium nanoparticles (MgNPs-BV). In this way, MMT-NPs@MgNPs-BV was synthesized by the impregnation method, where an experimental design was used to verify the synthesis conditions. The ideal condition by experimental design was carried out in terms of the characterization and biological activity, where we demonstrated MMT-NPs of 30% w w-1, MgNPs-BV of 6% w w-1, and a calcination temperature of 1273.15 K with a cell viability around 66.87%, an average crystallite diameter of 12.5 nm, and a contact angle of 17.7°. The characterizations confirmed the impregnation method with an average particle size of 51.4 ± 13.1 nm. The mechanical tests showed a hardness of 2.6 GPa with an apparent porosity of 22.2%, similar to human bone. MMT-NPs@MgNPs-BV showed a cell proliferation of around 96% in osteoblastic cells (OFCOL II), with the formation of the apatite phase containing a relation of Ca/P of around 1.63, a biodegradability of 82%, and rapid release of ions with a Ca/P ratio of 1.42. Therefore, the eco-friendly hybrid reinforcement with MMT-NPs and MgNPs-BV shows potential for application with a matrix for biocompatible nanocomposites for bone regeneration.


Assuntos
Bentonita , Nanopartículas , Criança , Humanos , Idoso , Qualidade de Vida , Regeneração Óssea , Íons
5.
J Environ Sci Health B ; 59(4): 131-141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38314812

RESUMO

Small slaughterhouses generate biowaste, which for economic reasons, is generally destined for composting. Inoculating appropriate microorganisms can improve biodegradation efficiency and mitigate odor generation during the composting process and can give rise to composts with neutral or pleasant odors. Therefore, the aim of this study was to compare the odor intensity reduction of compost generated with and without a formulated inoculum (Saccharomyces cerevisiae, Bacillus subtilis, and Rhodopseudomonas palustris). A set of experimental data was collected and analyzed according to the German "Verein Deutscher Ingenieure" odor protocol. The results showed that adding microorganisms was effective in reducing unpleasant odors in all three composts generated from swine, cattle, and poultry slaughterhouse by-products during both summer and winter seasons. Additionally, soil odor was predominant in composts that were inoculated in the two tested seasons (i.e., summer and winter). On the other hand, composts without inoculation had odors similar to peat for swine compost, ammonia for cattle compost, and manure for poultry compost, regardless of the season tested. Overall, composting process with appropriate inoculum can help in the correct disposal of slaughterhouse wastes by transforming organic matter into composts, which can have economic and environmental value as a soil conditioner and/or fertilizer.


Assuntos
Compostagem , Animais , Bovinos , Suínos , Matadouros , Odorantes/prevenção & controle , Solo , Biodegradação Ambiental , Esterco
6.
Food Chem ; 443: 138515, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38277934

RESUMO

In light of the growing demand for alternative protein sources, laboratory-grown meat has been proposed as a potential solution to the challenges posed by conventional meat production. Cultured meat does not require animal slaughter and uses sustainable production methods, contributing to animal welfare, human health, and environmental sustainability. However, some challenges still need to be addressed in cultured meat production, such as the use of fetal bovine serum for medium supplementation. This ingredient has limited availability, increases production costs, and raises ethical concerns. This review explores the potential of non-animal protein hydrolysates derived from agro-industrial wastes as substitutes for critical components of fetal bovine serum in cultured meat production. Despite the lack of standardization of hydrolysate composition, the potential benefits of this alternative protein source may outweigh its disadvantages. Future research holds promise for increasing the accessibility of cultured meat.


Assuntos
Resíduos Industriais , Hidrolisados de Proteína , Animais , Carne in vitro , Carne/análise , Soroalbumina Bovina
7.
Environ Res ; 247: 118220, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38242422

RESUMO

The work investigates the potential of peanut shells, an abundant agro-industrial waste, to serve as an adsorbent precursor for the effective and simple treatment of effluents loaded with cadmium and nickel ions. Among the adsorbents prepared, carbonized peanut shell (CCarb), due to its higher adsorption capacity, proved to be the most effective compared to carbonized and activated peanut shell (CATQ). The carbonization process led to structural changes, which resulted in an increase in surface area (around 6 times more in CATQ) and pore volume (around 3 times more in CATQ). Even so, the amount of H+ acid sites due to acid activation produced unfavorable effects for adsorption. Hydroxyl, carboxyl and carbonyl groups were identified on the adsorbent surface which presented favorable charges for metal adsorption. This improvement propels the carbonized variant to the forefront, demonstrating the highest adsorption capacity and reaching equilibrium in less than 90 and 60 min for cadmium and nickel ions, respectively. In both monocomponent and bicomponent systems concentrations greater than 40 ppm signify an increase in adsorption capacity for Ni2+. The experimental data best fit the Freundlich model, showing maximum adsorption capacities of 17.04 mg g-1 for cadmium and 31.28 mg g-1 for nickel. Despite the antagonistic effect observed in the bicomponent system, this study concludes by underlining the promise of activated carbon from peanut shells to harmonize technical and environmental concerns.


Assuntos
Níquel , Poluentes Químicos da Água , Cádmio , Arachis , Adsorção , Bismuto , Íons , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
8.
Environ Res ; 244: 117879, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086503

RESUMO

Biosurfactants are eco-friendly compounds with unique properties and promising potential as sustainable alternatives to chemical surfactants. The current review explores the multifaceted nature of biosurfactant production and applications, highlighting key fermentative parameters and microorganisms able to convert carbon-containing sources into biosurfactants. A spotlight is given on biosurfactants' obstacles in the global market, focusing on production costs and the challenges of large-scale synthesis. Innovative approaches to valorizing agro-industrial waste were discussed, documenting the utilization of lignocellulosic waste, food waste, oily waste, and agro-industrial wastewater in the segment. This strategy strongly contributes to large-scale, cost-effective, and environmentally friendly biosurfactant production, while the recent advances in waste valorization pave the way for a sustainable society.


Assuntos
Resíduos Industriais , Eliminação de Resíduos , Alimentos , Fermentação , Tensoativos/química
9.
Prep Biochem Biotechnol ; 54(1): 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37071540

RESUMO

This study describes the production, characterization and application of an endoglucanase from Penicillium roqueforti using lignocellulosic agro-industrial wastes as the substrate during solid-state fermentation. The endoglucanase was generated after culturing with different agro-industrial wastes for 96 h without any pretreatment. The highest activity was obtained at 50 °C and pH 4.0. Additionally, the enzyme showed stability in the temperature and pH ranges of 40-80 °C and 4.0-5.0, respectively. The addition of Ca2+, Zn2+, Mg2+, and Cu2+ increased enzymatic activity. Halotolerance as a characteristic of the enzyme was confirmed when its activity increased by 35% on addition of 2 M NaCl. The endoglucanase saccharified sugarcane bagasse, coconut shell, wheat bran, cocoa fruit shell, and cocoa seed husk. The Box-Behnken design was employed to optimize fermentable sugar production by evaluating the following parameters: time, substrate, and enzyme concentration. Under ideal conditions, 253.19 mg/g of fermentable sugars were obtained following the saccharification of wheat bran, which is 41.5 times higher than that obtained without optimizing. This study presents a thermostable, halotolerant endoglucanase that is resistant to metal ions and organic solvents with the potential to be applied in producing fermentable sugars for manufacturing biofuels from agro-industrial wastes.


Assuntos
Celulase , Saccharum , Celulase/química , Celulose , Fibras na Dieta , Fermentação , Resíduos Industriais , Projetos de Pesquisa , Saccharum/metabolismo , Açúcares , Cálcio/química , Cobre/química , Zinco/química , Magnésio/química
10.
Braz J Microbiol ; 54(4): 2719-2731, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37783938

RESUMO

In this work, a new isolate yeast, namely Rhodotorula toruloides KP324973, was examined for ß-carotene production from corn steep liquor (CSL) as a sole carbon source because CSL as the by-product of corn wet-milling process mainly enriched from the water-soluble carbohydrates. The studies were preliminary performed at the shaken flasks, and then developed at batch and fed-batch modes in a bubble column reactor (BCR). Application of the BCR improved the carotenogenesis of the cells in comparison with shaken flasks and the specific ß-carotene production rate (Rp) and the yield of ß-carotene production from the total reducing sugars (YP/TRS) reached 2.23 mg gcell-1 h-1 and 36.82 mg gTRS-1, respectively. Further studies were carried out to optimize the operational factors of the BCR for a fed-batch production by the response surface methodology. An optimal condition at a feed flow rate of 2.5 mL h-1, temperature 11.7°C, and initial pH of 6.1 obtained the highest Rp = 12.31 mg gcell-1 h-1 and YP/TRS = 97.18 mg gTRS-1.


Assuntos
Rhodotorula , beta Caroteno , Zea mays , Reatores Biológicos , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA