Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 47(7): 1057-1070, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38842769

RESUMO

The treatment of agroindustrial wastewater using microbial fuel cells (MFCs) is a technological strategy to harness its chemical energy while simultaneously purifying the water. This manuscript investigates the organic load effect as chemical oxygen demand (COD) on the production of electricity during the treatment of cassava wastewater by means of a dual-chamber microbial fuel cell in batch mode. Additionally, specific conditions were selected to evaluate the semi-continuous operational mode. The dynamics of microbial communities on the graphite anode were also investigated. The maximum power density delivered by the batch MFC (656.4 µW m - 2 ) was achieved at the highest evaluated organic load (6.8 g COD L - 1 ). Similarly, the largest COD removal efficiency (61.9%) was reached at the lowest organic load (1.17 g COD L - 1 ). Cyanide degradation percentages (50-70%) were achieved across treatments. The semi-continuous operation of the MFC for 2 months revealed that the voltage across the cell is dependent on the supply or suspension of the organic load feed. The electrode polarization resistance was observed to decreases over time, possibly due to the enrichment of the anode with electrogenic microbial communities. A metataxonomic analysis revealed a significant increase in bacteria from the phylum Firmicutes, primarily of the genus Enterococcus.


Assuntos
Fontes de Energia Bioelétrica , Manihot , Águas Residuárias , Fontes de Energia Bioelétrica/microbiologia , Manihot/química , Águas Residuárias/microbiologia , Águas Residuárias/química , Análise da Demanda Biológica de Oxigênio , Eletrodos , Purificação da Água/métodos
2.
Biochem Mol Biol Educ ; 51(2): 221-229, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36495269

RESUMO

Nowadays there is a concern to improve the quality of education by including an interdisciplinary approach of concepts and their integration in the curriculum of scientific disciplines. The development of microbial fuel cells as a potential alternative for production of renewable energies gives undergraduate students the challenge of integrating interdisciplinary concepts in a hot topic of global interest as alternative energies. We present a laboratory experiment that has been part of a third-year undergraduate course in biology where students gained experience in assembling microbial fuel cells and the understanding of how they work. In this process, the students could integrate biological, biochemical, and electric concepts. In addition, the acquisition of manual skills and experimental design decisions are important for the development of future professionals.


Assuntos
Fontes de Energia Bioelétrica , Humanos , Avaliação Educacional , Currículo , Estudantes , Estudos Interdisciplinares
3.
Mikrochim Acta ; 189(3): 94, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35132460

RESUMO

Recent research in the field of electrochemical biosensors equipped with peptides and nanomaterials have been categorized, reviewed, and critically analyzed. Indeed, using these innovative biosensors can revolutionize biomedical diagnostics in the future. Saving lives, time, and money in this field will be considered as some main benefits of this type of diagnosis. Here, these biosensors have been categorized and evaluated in four main sections. In the first section, the focus is on investigating the types of electrochemical peptide-based nanobiosensors applied to detect pathogenic microorganisms, microbial toxins, and viruses. In the second section, due to the importance of rapid diagnosis and prognosis of various cancers, the electrochemical peptide-based nanobiosensors designed to detect cancer biomarkers have been reviewed and analyzed. In the third section, the electrochemical peptide-based nanobiosensors, which were applied to detect the essential and effective biomolecules in the various diseases, and health control, including enzymes, hormones, biomarkers, and other biomolecules, have been considered. Finally, using a comprehensive analysis, all the used elements in these biosensors have been presented as conceptual diagrams that can effectively guide researchers in future developments. The essential factors in evaluating and analyzing these electrochemical peptide-based nanobiosensors such as analyte, peptide sequence, functional groups interacted between the peptide sequences and other biosensing components, the applied nanomaterials, diagnostic techniques, detection range, and limit of detection have also been included. Other analyzable items such as the type of used redox marker and the location of the peptide sequence against the signal transducer were also considered.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Neoplasias/diagnóstico , Peptídeos/química , Humanos , Listeria monocytogenes/isolamento & purificação , Nanoestruturas/química , Proteínas/análise , Staphylococcus aureus/isolamento & purificação
4.
ACS Appl Mater Interfaces ; 13(9): 10719-10727, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33645209

RESUMO

This work reports the study of ZnO-based anodes for the photoelectrochemical regeneration of the oxidized form of nicotinamide adenine dinucleotide (NAD+). The latter is the most important coenzyme for dehydrogenases. However, the high costs of NAD+ limit the use of such enzymes at the industrial level. The influence of the ZnO morphologies (flower-like, porous film, and nanowires), showing different surface area and crystallinity, was studied. The detection of diluted solutions (0.1 mM) of the reduced form of the coenzyme (NADH) was accomplished by the flower-like and the porous films, whereas concentrations greater than 20 mM were needed for the detection of NADH with nanowire-shaped ZnO-based electrodes. The photocatalytic activity of ZnO was reduced at increasing concentrations of NAD+ because part of the ultraviolet irradiation was absorbed by the coenzyme, reducing the photons available for the ZnO material. The higher electrochemical surface area of the flower-like film makes it suitable for the regeneration reaction. The illumination of the electrodes led to a significant increase on the NAD+ regeneration with respect to both the electrochemical oxidation in dark and the only photochemical reaction. The tests with formate dehydrogenase demonstrated that 94% of the regenerated NAD+ was enzymatically active.


Assuntos
Técnicas Eletroquímicas/instrumentação , Eletrodos , NAD/química , Fotoquímica/instrumentação , Óxido de Zinco/química , Formiato Desidrogenases/química , Proteínas Fúngicas/química , Nanofios/química , Nanofios/efeitos da radiação , Oxirredução , Saccharomycetales/enzimologia , Raios Ultravioleta , Óxido de Zinco/efeitos da radiação
5.
Artigo em Inglês | MEDLINE | ID: mdl-32974292

RESUMO

Oxygenic photosynthesis conducted by cyanobacteria has dramatically transformed the geochemistry of our planet. These organisms have colonized most habitats, including extreme environments such as the driest warm desert on Earth: the Atacama Desert. In particular, cyanobacteria highly tolerant to desiccation are of particular interest for clean energy production. These microorganisms are promising candidates for designing bioelectrodes for photocurrent generation owing to their ability to perform oxygenic photosynthesis and to withstand long periods of desiccation. Here, we present bioelectrochemical assays in which graphite electrodes were modified with the extremophile cyanobacterium Gloeocapsopsis sp. UTEXB3054 for photocurrent generation. Optimum working conditions for photocurrent generation were determined by modifying directly graphite electrode with the cyanobacterial culture (direct electron transfer), as well as using an Os polymer redox mediator (mediated electron transfer). Besides showing outstanding photocurrent production for Gloeocapsopsis sp. UTEXB3054, both in direct and mediated electron transfer, our results provide new insights into the metabolic basis of photocurrent generation and the potential applications of such an assisted bioelectrochemical system in a worldwide scenario in which clean energies are imperative for sustainable development.

6.
Environ Sci Pollut Res Int ; 27(29): 36075-36084, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32613514

RESUMO

Combination of the treatment of effluents with high organic loads and the production of electricity is the driving forces stimulating the development of microbial fuel cells (MFC). The increase in electricity production in MFCs requires not only the optimization of the operational parameters but also the inhibition of the metabolic pathways, which compete with electricity production, such as methanogenesis. The presence of both sulphate and sulphide ions in conventional anaerobic reactors hampers the growth of methanogenic archaea and justifies the use of sulphate and therefore sulphate-reducing bacteria (SRB) in the anodic half-cell of MFC. Most importantly, the literature on the subject reveals that SRB are able to directly transfer electrons to solid electrodes, enabling the production of electrical energy. This technology is versatile because it associates the removal of both sulphate and the chemical oxygen demand (COD) with the production of electricity. Therefore, the current work revises the main aspects related to the inoculation of MFC with SRB focusing on (i) the microbial interactions in the anodic chamber, (ii) the electron transfer pathways to the solid anode, and also (iii) the sulphate and COD removal yields along with the electricity production efficiencies.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Eletrodos , Oxirredução , Sulfatos , Águas Residuárias
7.
Mater Sci Eng C Mater Biol Appl ; 109: 110575, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228910

RESUMO

We report a straightforward route for the preparation of flexible, electrochemically stable and easily functionalizable poly(3,4-ethylenedioxythiophene) (PEDOT) composite films deposited on PET foils as biosensing platforms. For this purpose, poly(allylamine) hydrochloride (PAH) was blended with PEDOT to provide amine-bearing sites for further biofunctionalization as well as to improve the mechanical properties of the films. The conducting PEDOT-PAH composite films were characterized by cyclic voltammetry, UV-vis and Raman spectroscopies. An exhaustive stability study was carried out from the mechanical, morphological and electrochemical viewpoint. Subsequent sugar functionalization of the available amine groups from PAH allowed for the specific recognition of lectins and the subsequent self-assembly of glycoenzymes (glucose oxidase and horseradish peroxidase) concomitant with the prevention of non-specific protein fouling. The platforms presented good bioelectrochemical performance (glucose oxidation and hydrogen peroxide reduction) in the presence of redox mediators. The developed composite films constitute a promising option for the construction of all-polymer biosensing platforms with great potential owing to their flexibility, high transmittance, electrochemical stability and the possibility of glycosylation, which provides a simple route for specific biofunctionalization as well as an effective antifouling strategy.


Assuntos
Aspergillus niger/enzimologia , Técnicas Biossensoriais , Compostos Bicíclicos Heterocíclicos com Pontes/química , Técnicas Eletroquímicas , Proteínas Fúngicas/química , Glucose Oxidase/química , Glucose/análise , Membranas Artificiais , Poliaminas/química , Polímeros/química , Peroxidase do Rábano Silvestre/química
8.
Bioelectrochemistry ; 129: 116-123, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31153126

RESUMO

In this study, (1→3)(1→6)-ß-D-glucan (botryosphaeran) from Botryosphaeria rhodina MAMB-05 was used, for the first time, to immobilize laccase on a carbon black paste electrode modified with gold nanoparticles. The physicochemical characterization of the proposed laccase-biosensor was performed using transmission electron microscopy and electrochemical impedance spectroscopy. The performance of this novel bio-device was evaluated by choosing hydroquinone as a typical model of a phenolic compound. For hydroquinone determination, experimental variables such as enzyme concentration, pH and operational parameters of the electroanalytical technique were optimized. From square-wave voltammograms, a linear dependence between the cathodic current peak and the hydroquinone concentration was observed within the range 2.00-56.5µmolL-1, with a theoretical detection limit of 0.474µmolL-1. The proposed method was successfully applied to determine hydroquinone in dermatological cream, and samples from biological and environmental niches. The proposed biosensor device presented good selectivity in the presence of uric acid, various inorganic ions, as well as other phenolic compounds, demonstrating the potential application of this biosensing platform in complex matrices. Operational and analytical stability of the laccase biosensor were evaluated, and demonstrated good intra-day (SD=0.3%) and inter-day (SD=3.4%) repeatability and long storage stability (SD=4.9%).


Assuntos
Ascomicetos/enzimologia , Técnicas Biossensoriais/métodos , Enzimas Imobilizadas/química , Glucanos/química , Hidroquinonas/análise , Lacase/química , Fuligem/química , Técnicas Biossensoriais/instrumentação , Estabilidade Enzimática , Desenho de Equipamento , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química
9.
An. acad. bras. ciênc ; 90(1,supl.1): 825-857, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-886938

RESUMO

ABSTRACT Bioelectrochemistry can be defined as a branch of Chemical Science concerned with electron-proton transfer and transport involving biomolecules, as well as electrode reactions of redox enzymes. The bioelectrochemical reactions and system have direct impact in biotechnological development, in medical devices designing, in the behavior of DNA-protein complexes, in green-energy and bioenergy concepts, and make it possible an understanding of metabolism of all living organisms (e.g. humans) where biomolecules are integral to health and proper functioning. In the last years, many researchers have dedicated itself to study different redox enzymes by using electrochemistry, aiming to understand their mechanisms and to develop promising bioanodes and biocathodes for biofuel cells as well as to develop biosensors and implantable bioelectronics devices. Inside this scope, this review try to introduce and contemplate some relevant topics for enzyme bioelectrochemistry, such as the immobilization of the enzymes at electrode surfaces, the electron transfer, the bioelectrocatalysis, and new techniques conjugated with electrochemistry vising understand the kinetics and thermodynamics of redox proteins. Furthermore, examples of recent approaches in designing biosensors and biofuel developed are presented.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Eletroquímica , Transporte de Elétrons , Enzimas/química , Enzimas/fisiologia
10.
ACS Appl Mater Interfaces ; 9(1): 1119-1128, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-27977921

RESUMO

The search for strategies to improve the performance of bioelectrochemical platforms based on supramolecular materials has received increasing attention within the materials science community, where the main objective is to develop low-cost and flexible routes using self-assembly as a key enabling process. Important contributions to the performance of such bioelectrochemical devices have been made based on the integration and supramolecular organization of redox-active polyelectrolyte-surfactant complexes on electrode supports. Here, we examine the influence of the processing solvent on the interplay between the supramolecular mesoorganization and the bioelectrochemical properties of redox-active self-assembled nanoparticle-polyelectrolyte-surfactant nanocomposite thin films. Our studies reveal that the solvent used in processing the supramolecular films and the presence of metal nanoparticles not only have a substantial influence in determining the mesoscale organization and morphological characteristics of the film but also have a strong influence on the efficiency and performance of the bioelectrochemical system. In particular, a higher bioelectrochemical response is observed when nanocomposite supramolecular films were cast from aqueous solutions. These observations seem to be associated with the fact that the use of aqueous solvents increases the hydrophilicity of the film, thus favoring the access of glucose, particularly at low concentrations. We believe that these results improve our current understanding of supramolecular nanocomposite materials generated via polyelectrolyte-surfactant complexes, in order to use the processing conditions as a variable to improve the performance of bioelectrochemical devices.


Assuntos
Tensoativos/química , Glucose Oxidase , Oxirredução , Polieletrólitos , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA