Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Dent J (Basel) ; 12(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39056993

RESUMO

The objective of this work was to assess the efficacy of different proteolytic agents on the bond strength of pit and fissure sealants to bovine enamel. Eighty-four bovine enamel specimens were randomly assigned in groups according to the pit and fissure sealant applied (HelioSeal F or Dyad Flow). Then, the specimens were subdivided according to the proteolytic agent used (n = 7): Group 1, distilled water (control); Group 2, 10 wt.% Tergazyme®; Group 3, 10 wt.% ZYME®; Group 4, 10% papain gel; Group 5, 10% bromelain gel; and Group 6, 5.25 wt.% sodium hypochlorite. The cell viability of the proteolytic solutions was assessed through the MTT assay. The proteolytic agents were applied on the enamel surface prior to the acid-etching procedure; then, the pit and fissure sealants were placed. The micro-shear bond strength was evaluated after 24 h or 6 months of water storing at 37 °C. Representative SEM images were taken for each experimental group. The bond strength data were statistically analyzed by a three-way ANOVA test using a significance level of α = 0.05. Bromelain and papain proteolytic solutions did not exert any cytotoxic effect on the human dental pulp cells. After 24 h and 6 months of aging, for both pit and fissure sealants, sodium hypochlorite, papain, bromelain, and Tergazyme® achieved statistically significant higher bond strength values (p < 0.05). Irrespective of the deproteinizing agent used, Dyad Flow resulted in a better bond strength after 6 months of aging. The type 1 etching pattern was identified for sodium hypochlorite, papain, and bromelain. Tergazyme®, papain, and bromelain demonstrated efficacy in deproteinizing enamel surfaces prior to acid etching, leading to the improved bond strength of pit and fissure sealants. Clinically, this suggests that these proteolytic agents can be considered viable alternatives to traditional methods for enhancing sealant retention and longevity. Utilizing these agents in dental practice could potentially reduce sealant failures.

2.
Nat Prod Res ; : 1-14, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676413

RESUMO

Inflammation is a complex and necessary mechanism of an organ's response to biological, chemical and/or physical stimuli. In recent years, investigations on natural compounds with therapeutic actions for the treatment of different diseases have increased. Among these compounds, bromelain is highlighted, as a cysteine protease isolated from the Ananas comosus (pineapple) stem. This review aimed to evaluate the anti-inflammatory activity of bromelain, as well as its pathways on inflammatory mediators, through a systematic review with in vitro studies on different cell lines. The search was performed in PubMed, Science Direct, Scopus, Cochrane Library and Web of Science databases. Bromelain reduced IL-1ß, IL-6 and TNF-α secretion when immune cells were already stimulated in an overproduction condition by proinflammatory cytokines, generating a modulation in the inflammatory response through prostaglandins reduction and activation of a cascade reactions that trigger neutrophils and macrophages, in addition to accelerating the healing process.

3.
Clin Oral Investig ; 28(1): 106, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38244108

RESUMO

OBJECTIVES: To evaluate the effect of bromelain associated with Biosilicate on the bond strength (BS) of a universal adhesive system to sound (SD) and caries-affected dentin (CAD), and on the proteolytic activity. MATERIALS AND METHODS: Cavities were prepared in 360 molars, half submitted to cariogenic challenge. Teeth were separated into groups (n=20): Control-No treatment; CHX-0.12% chlorhexidine; NaOCl-5% sodium hypochlorite; Br5%-5% bromelain; Br10%-10% bromelain; Bio-10% Biosilicate; NaOClBio-NaOCl+Bio; Br5%Bio-Br5%+Bio; Br10%Bio-Br10%+Bio. Following treatments, the adhesive system was applied, and cavities were restored. Samples were sectioned into sticks and stored at 37 °C for 24 h, 6 months, and 1 year. Microtensile BS (2-way ANOVA, Bonferroni's test, α=0.05), fracture patterns (SEM), and adhesive interfaces (TEM) were evaluated. Bacterial collagenase assay and in situ zymography were performed. RESULTS: In CAD, Br10% presented higher BS (p=0.0208) than Br5%Bio. Br5% presented higher BS (p=0.0033) after 6 months than after 24 h; and association of treatments, higher BS (p<0.05) after aging than after 24 h. Mixed fractures were the most prevalent. Association of treatments promoted a more uniform hybrid layer with embedded Bio particles. Experimental groups presented lower (p<0.0001) relative fluorescence units than Control. Bromelain, associated or not with Bio, showed collagenolytic degradation. CONCLUSIONS: Bromelain associated with Biosilicate did not affect the BS to SD. In CAD, Br5%Bio decreased immediate BS but had no long-term influence. This association decreased the proteolytic activity. CLINICAL RELEVANCE: Bromelain and Biosilicate may enhance the longevity of adhesive restorations by inhibiting endogenous proteases.


Assuntos
Colagem Dentária , Cárie Dentária , Humanos , Cimentos Dentários/química , Adesivos Dentinários/química , Bromelaínas/farmacologia , Bromelaínas/análise , Teste de Materiais , Dentina , Cerâmica , Resistência à Tração , Cimentos de Resina/farmacologia
4.
J Esthet Restor Dent ; 36(5): 770-777, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38014602

RESUMO

OBJECTIVE: This study evaluated the effect of bromelain and propolis extract on the bond strength (BS) of a universal adhesive system to eroded dentin. MATERIALS AND METHODS: Sixty human molars with exposed dentin were halved, with one half protected by composite resin and the other subjected to erosive treatment followed by remineralization. After the erosive treatment, the composite resin was removed, and the teeth were randomly assigned to three groups (n = 20): Adhesive-Control System; Br-10%; Pr-16%. Following the treatments, composite resin blocks were built on the dentin surfaces and sticks of 0.9 mm2 were obtained and stored in distilled water at 37°C for 24 h and 6 months. After these periods, the sticks underwent bond strength testing and the data were analyzed using 2-way ANOVA, Bonferroni test, p < 0.05. Fracture patterns were observed using light microscope and scanning electron microscopy. RESULTS: Irrespective of the substrate and aging duration, propolis demonstrated higher BS (p < 0.05) compared to the other treatments. Eroded dentin exhibited greater removal of the smear layer and dentinal tubules with a larger diameter than sound dentin, especially when treated with bromelain, resulting in the formation of resin tags. CONCLUSIONS: Propolis consistently promoted the highest bond strength, irrespective of aging or substrate. Eroded dentin treated with propolis, or bromelain exhibited a higher prevalence of non-adhesive fractures and resin tag formation. CLINICAL SIGNIFICANCE: Propolis shows promise for enhancing the longevity of adhesive restorations in eroded dentin due to its ability to promote high bond strength.


Assuntos
Colagem Dentária , Própole , Humanos , Bromelaínas , Adesivos Dentinários/química , Cimentos de Resina/química , Própole/farmacologia , Dentina , Resinas Compostas/química , Resistência à Tração , Teste de Materiais
5.
Biochem Biophys Rep ; 37: 101598, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38075000

RESUMO

Bromelain, the main protease enzyme found in the pineapple plant (Ananas comosus), has had its antinociceptive effect previously demonstrated. This investigation aimed to appraise the role of TRP (Transient Receptor Potential) channels in the nociception-relieving effects of bromelain in the orofacial region of adult zebrafish. The animals were pretreated with bromelain (3.0, 10.0 or 30.0 mg/mL; gavage) and submitted to open field and acute orofacial (capsaicin - TRPV1 agonist, cinnamaldehyde - TRPA1 agonist or menthol - TRPM8 agonist) nociception tests. The investigation also explored the contribution of central afferent C-fibers. Naive groups were included for comparison. Bromelain did not independently affect the zebrafish movement patterns. However, bromelain decreased the nociceptive responses elicited by all three TRP channel activators. Capsazepine (TRPV1 inhibitor) and AMTB (TRPM8 inhibitor), but not HC-030031 (TRPA1 inhibitor), prevented the antinociceptive effect of bromelain. Moreover, capsaicin-induced desensitization effectively nullified the antinociceptive effect of bromelain. Collectively, these findings corroborate the therapeutic relevance of bromelain as a suppressor of orofacial nociception, which seems to be intricately connected to the modulation of TRP channels.

6.
Molecules ; 28(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903263

RESUMO

Ochratoxin A (OTA) is considered one of the main mycotoxins responsible for health problems and considerable economic losses in the feed industry. The aim was to study OTA's detoxifying potential of commercial protease enzymes: (i) Ananas comosus bromelain cysteine-protease, (ii) bovine trypsin serine-protease and (iii) Bacillus subtilis neutral metalloendopeptidase. In silico studies were performed with reference ligands and T-2 toxin as control, and in vitro experiments. In silico study results showed that tested toxins interacted near the catalytic triad, similar to how the reference ligands behave in all tested proteases. Likewise, based on the proximity of the amino acids in the most stable poses, the chemical reaction mechanisms for the transformation of OTA were proposed. In vitro experiments showed that while bromelain reduced OTA's concentration in 7.64% at pH 4.6; trypsin at 10.69% and the neutral metalloendopeptidase in 8.2%, 14.44%, 45.26% at pH 4.6, 5 and 7, respectively (p < 0.05). The less harmful α-ochratoxin was confirmed with trypsin and the metalloendopeptidase. This study is the first attempt to demonstrate that: (i) bromelain and trypsin can hydrolyse OTA in acidic pH conditions with low efficiency and (ii) the metalloendopeptidase was an effective OTA bio-detoxifier. This study confirmed α-ochratoxin as a final product of the enzymatic reactions in real-time practical information on OTA degradation rate, since in vitro experiments simulated the time that food spends in poultry intestines, as well as their natural pH and temperature conditions.


Assuntos
Micotoxinas , Ocratoxinas , Animais , Bovinos , Ocratoxinas/análise , Bromelaínas , Simulação de Acoplamento Molecular , Tripsina , Ração Animal/análise , Metaloendopeptidases
7.
Acta sci., Biol. sci ; 45: e65725, 2023. graf, tab
Artigo em Inglês | VETINDEX | ID: biblio-1509305

RESUMO

Bromelain is a set of proteolytic enzymes usually obtained from pineapple (Ananas comosus). Although bromelain has distinguished therapeutic properties, little is known about its proteolytic potential against opportunistic pathogens related to wound healing complications, such as Staphylococcus aureus. This study aimed toinvestigate the antibiofilm and antibacterial activity of bromelain in 43 clinical strains of S. aureusisolated from chronic wounds and blood cultures. Bromelain's activity against S. aureusbiofilm in vitrowas assessed by analyzing biofilm formation in cultures grownin the presence of 1% bromelain and biofilm destruction after the addition of 1% bromelain to mature biofilms. Proteinase K and sodium metaperiodate were also added to mature biofilms in parallel to compare their activity with that of bromelain and, together with exopolysaccharide and protein production rate assays, to determine the chemical composition of the biofilm extracellular matrix of selected strains of S. aureus. Bromelain was also evaluated for its DNase activity and impact on cellular hydrophobicity and auto-aggregation. Mueller-Hinton agar dilution was used to determine bromelain minimal inhibitory concentration (MIC). Biofilm assays showed that 1% bromelain significantly inhibits S. aureusbiofilm formation (p= 0.0157) by up to 4-fold and destroys its mature biofilms (p < 0.0001) by up to 6.4-fold, both compared to the control grown without bromelain. Biofilms of methicillin-resistant S. aureusstrains isolated from chronic wounds were the most affected by bromelain treatment. No antibacterial activity was detected with bromelain MIC assays and the proteolytic activity of bromelain was identified as the main antibiofilm mechanism of the enzyme, though its DNase activity may also contribute. The epithelial therapeutic properties of bromelain combined with its antibiofilm activity against S. aureusmake it a promising alternative to compose the therapeutic arsenal for the control of S. aureusbiofilms in the context of wound care.(AU)


Assuntos
Staphylococcus aureus/imunologia , Bromelaínas/análise , Biofilmes
8.
Molecules ; 27(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234901

RESUMO

Bromelain has potential as an analgesic, an anti-inflammatory, and in cancer treatments. Despite its therapeutic effects, this protein undergoes denaturation when administered orally. Microencapsulation processes have shown potential in protein protection and as controlled release systems. Thus, this paper aimed to develop encapsulating systems using sodium alginate as a carrier material and positively charged amino acids as stabilizing agents for the controlled release of bromelain in in vitro tests. The systems were produced from the experimental design of centroid simplex mixtures. Characterizations were performed by FTIR showing that bromelain was encapsulated in all systems. XRD analyses showed that the systems are semi-crystalline solids and through SEM analysis the morphology of the formed systems followed a pattern of rough microparticles. The application of statistical analysis showed that the systems presented behavior that can be evaluated by quadratic and special cubic models, with a p-value < 0.05. The interaction between amino acids and bromelain/alginate was evaluated, and free bromelain showed a reduction of 74.0% in protein content and 23.6% in enzymatic activity at the end of gastric digestion. Furthermore, a reduction of 91.6% of protein content and 65.9% of enzymatic activity was observed at the end of intestinal digestion. The Lis system showed better interaction due to the increased stability of bromelain in terms of the amount of proteins (above 63% until the end of the intestinal phase) and the enzymatic activity of 89.3%. Thus, this study proposes the development of pH-controlled release systems aiming at increasing the stability and bioavailability of bromelain in intestinal systems.


Assuntos
Alginatos , Bromelaínas , Alginatos/química , Aminoácidos , Preparações de Ação Retardada , Excipientes , Projetos de Pesquisa
9.
Foods ; 11(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36010429

RESUMO

Hydrolysis of proteins leads to the release of bioactive peptides with positive impact on human health. Peptides exhibiting antihypertensive properties (i.e., inhibition of angiotensin-I-converting enzyme) are commonly found in whey protein hydrolysates made with enzymes of animal, plant or microbial origin. However, bioactive properties can be influenced by processing conditions and gastrointestinal digestion. In this study, we evaluated the impact of three plant enzymes (papain, bromelain and ficin) in the manufacture of whey protein hydrolysates with varying level of pH, enzyme-to-substrate ratio and time of hydrolysis, based on a central composite design, to determine the degree of hydrolysis and antihypertensive properties. Hydrolysates made on laboratory scales showed great variation in the type of enzyme used, their concentrations and the pH level of hydrolysis. However, low degrees of hydrolysis in papain and bromelain treatments were associated with increased antihypertensive properties, when compared to ficin. Simulated gastrointestinal digestion performed for selected hydrolysates showed an increase in antihypertensive properties of hydrolysates made with papain and bromelain, which was probably caused by further release of peptides. Several peptides with reported antihypertensive properties were found in all treatments. These results suggest plant enzymes used in this study can be suitable candidates to develop ingredients with bioactive properties.

10.
Food Res Int ; 155: 111117, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35400408

RESUMO

Breast cancer (BC) is the type of cancer with the highest incidence and mortality rates in women worldwide. Despite its well-established risk factors, BC is following an epidemiological pattern, similar to obesity and other western pandemics, associated to demographic and environmental factors. Food and specific bioactive compounds have been evidenced as key factors in BC status attenuation. Native Brazilian fruits and derived products are rich sources of bioactive compounds, which exert valuable antioxidant, anti-inflammatory, and anticancer effects. Therefore, the aim of this review is to evidence the potential of Brazilian fruits in BC by revealing some of the mechanisms underlaying the anticancer effects of their respective bioactive compounds. The interventions investigated here generally show promising evidence, reducing tumor growth or cancer cell viability, and regulating the cell cycle. Native Brazilian fruits, such as açaí, cocoa, guarana, passionfruit, and pineapple have been associated with the regulation of BC-related molecular biomarkers.


Assuntos
Anticarcinógenos , Neoplasias da Mama , Anticarcinógenos/farmacologia , Brasil , Feminino , Frutas , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA