Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 704: 135376, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31812428

RESUMO

One of the key challenges in landfill leachate treatment is removing organic matter (OM) and ammonium nitrogen (NH4+-N) at a low cost. To evaluate the feasibility of treatment wetlands for diluted (3:10) landfill leachate treatment with OM and NH4+-N oxidation, a lab-scale shallow subsurface horizontal flow system (HF wetland) comprised of two units operated in series was assessed as post-treatment of partial ammonia stripping system. A HF wetland planted with Heliconia psittacorum (HP) and an unplanted HF wetland (control) were supplemented with micronutrients and monitored under the influence of hydraulic retention time (HRT), pH, and the plant presence on performance. With an HRT above 4 days, mean chemical oxygen demand removal for both HP and the control was less than 20%, without complete mineralization, probably due to the recalcitrance of OM. For NH4+-N, the mean global removal efficiencies with and without influent pH adjustment were, respectively, 74% and 54% for HP and 56% and 43% for the control, resulting in mean concentrations between 36 and 93 mg L-1. The NH4+-N removal was correlated with inorganic carbon consumption followed by NO3- production, which suggests that nitrification was the major route of removal. For both systems, nitrification was significantly higher in one of the units, when biodegradable OM was already consumed and competition between heterotrophic and autotrophic bacteria for dissolved oxygen was likely minimized. By balancing the organic load and availability of dissolved oxygen within each unit in series, a reduced HRT necessary for NH4+-N oxidation was achieved, an essential aspect for the design of high performance constructed wetlands for full scale landfill leachate treatment.

2.
Bioresour Technol ; 211: 257-66, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27023380

RESUMO

Long-term effects of COD/N ratios on the nitrogen removal performance and bacterial community of an anammox reactor were evaluated by adding a synthetic medium (with glucose) and real anaerobic effluent to a SBR. At a COD/N ratio of 2.8 (COD, 390mg·L(-1)) ammonium removal efficiency was 66%, while nitrite removal remained high (99%). However, at a COD/N ratio of 5.0 (COD, 300mg·L(-1)), ammonium and nitrite removal efficiencies were high (84% and 99%, respectively). High COD, nitrite, and ammonium removal efficiencies (80%, 90% and 95%, respectively) were obtained on adding anaerobically pre-treated municipal wastewater (with nitrite) to the reactor. DGGE revealed that the addition of anaerobic effluent changed the bacterial community structure and selected for DNA sequences related to Brocadia sinica and Chloroflexi. Adding glucose and anaerobic effluent increased denitrifiers concentration threefold. Thus, the possibility of using the anammox process to remove nitrogen from anaerobically pre-treated municipal wastewater was demonstrated.


Assuntos
Reatores Biológicos/microbiologia , Nitrogênio , Águas Residuárias , Purificação da Água/métodos , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Nitritos/análise , Nitritos/química , Nitritos/isolamento & purificação , Nitrogênio/análise , Nitrogênio/química , Nitrogênio/isolamento & purificação , Águas Residuárias/química , Águas Residuárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA