Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 913: 169483, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38151128

RESUMO

Since the discovery of the third allotropic carbon form, carbon-based one-dimensional nanomaterials (1D-CNMs) became an attractive and new technology with different applications that range from electronics to biomedical and environmental technologies. Despite their broad application, data on environmental risks remain limited. Fish are widely used in ecotoxicological studies and biomonitoring programs. Thus, the aim of the current study was to summarize and critically analyze the literature focused on investigating the bioaccumulation and ecotoxicological impacts of 1D-CNMs (carbon nanotubes and nanofibers) on different fish species. In total, 93 articles were summarized and analyzed by taking into consideration the following aspects: bioaccumulation, trophic transfer, genotoxicity, mutagenicity, organ-specific toxicity, oxidative stress, neurotoxicity and behavioral changes. Results have evidenced that the analyzed studies were mainly carried out with multi-walled carbon nanotubes, which were followed by single-walled nanotubes and nanofibers. Zebrafish (Danio rerio) was the main fish species used as model system. CNMs' ecotoxicity in fish depends on their physicochemical features, functionalization, experimental design (e.g. exposure time, concentration, exposure type), as well as on fish species and developmental stage. CNMs' action mechanism and toxicity in fish are associated with oxidative stress, genotoxicity, hepatotoxicity and cardiotoxicity. Overall, fish are a suitable model system to assess the ecotoxicity of, and the environmental risk posed by, CNMs.


Assuntos
Nanofibras , Nanoestruturas , Nanotubos de Carbono , Animais , Nanotubos de Carbono/toxicidade , Nanofibras/toxicidade , Peixe-Zebra , Nanoestruturas/toxicidade , Estresse Oxidativo
2.
J Mol Model ; 29(7): 198, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37268861

RESUMO

CONTEXT: In this paper, we have addressed two issues that are relevant to the interaction of water in pristine and vacant graphene through first-principles calculations based on the Density Functional Theory (DFT). The results showed that for the interaction of pristine graphene with water, the DOWN configuration (with the hydrogen atoms facing downwards) was the most stable, presenting binding energies in the order of -13.62 kJ/mol at a distance of 2.375 Å in the TOP position. We also evaluated the interaction of water with two vacancy models, removing one carbon atom (Vac-1C) and four atoms (Vac-4C). In the Vac-1C system, the most favourable system was the DOWN configuration, with binding energies ranging from -20.60 kJ/mol to -18.41 kJ/mol in the TOP and UP positions, respectively. A different behaviour was observed for the interaction of water with Vac-4C; regardless of the configuration of the water, it is always more favourable for the interaction to occur through the vacancy centre, with binding energies ​​between -13.28 kJ/mol and -20.49 kJ/mol. Thus, the results presented open perspectives for the technological development of nanomembranes as well as providing a better understanding of the wettability effects of graphene sheets, whether pristine or with defects. METHOD: We evaluated the interaction of pristine and vacant graphene with the water molecule, through calculations based on Density Functional Theory (DFT); implemented by the SIESTA program. The electronic, energetic, and structural properties were analyzed by solving self-consistent Kohn-Sham equations. In all calculations, a double ζ plus a polarized function (DZP) was used for the numerical baise set. Local Density Approximation (LDA) with the Perdew and Zunger (PZ) parameterisation along with a basis set superposition error (BSSE) correction were used to describe the exchange and correlation potential (Vxc). The water and isolated graphene structures were relaxed until the residual forces were less than 0.05 eV/Å-1 in all atomic coordinates.

3.
Anal Bioanal Chem ; 415(18): 3879-3895, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36757464

RESUMO

Since the last decade, carbon nanomaterials have had a notable impact on different fields such as bioimaging, drug delivery, artificial tissue engineering, and biosensors. This is due to their good compatibility toward a wide range of chemical to biological molecules, low toxicity, and tunable properties. Especially for biosensor technology, the characteristic features of each dimensionality of carbon-based materials may influence the performance and viability of their use. Surface area, porous network, hybridization, functionalization, synthesis route, the combination of dimensionalities, purity levels, and the mechanisms underlying carbon nanomaterial interactions influence their applications in bioanalytical chemistry. Efforts are being made to fully understand how nanomaterials can influence biological interactions, to develop commercially viable biosensors, and to gain knowledge on the biomolecular processes associated with carbon. Here, we present a comprehensive review highlighting the characteristic features of the dimensionality of carbon-based materials in biosensing.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Carbono/química , Nanoestruturas/química , Sistemas de Liberação de Medicamentos , Técnicas Biossensoriais/métodos
4.
Pharmaceutics ; 14(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36559139

RESUMO

Gelatin methacryloyl (GelMA)-based composites are evolving three-dimensional (3D) networking hydrophilic protein composite scaffolds with high water content. These protein composites have been devoted to biomedical applications due to their unique abilities, such as flexibility, soft structure, versatility, stimuli-responsiveness, biocompatibility, biodegradability, and others. They resemble the native extracellular matrix (ECM) thanks to their remarkable cell-adhesion and matrix-metalloproteinase (MMP)-responsive amino acid motifs. These favorable properties promote cells to proliferate and inflate within GelMA-protein scaffolds. The performance of GelMA composites has been enriched using cell-amenable components, including peptides and proteins with a high affinity to harmonize cellular activities and tissue morphologies. Due to their inimitable merits, GelMA systems have been used in various fields such as drug delivery, biosensor, the food industry, biomedical, and other health sectors. The current knowledge and the role of GelMA scaffolds in bone tissue engineering are limited. The rational design and development of novel nanomaterials-incorporated GelMA-based composites with unique physicochemical and biological advantages would be used to regulate cellular functionality and bone regeneration. Substantial challenges remain. This review focuses on recent progress in mitigating those disputes. The study opens with a brief introduction to bone tissue engineering and GelMA-based composites, followed by their potential applications in bone tissue engineering. The future perspectives and current challenges of GelMA composites are demonstrated. This review would guide the researchers to design and fabricate more efficient multifunctional GelMA-based composites with improved characteristics for their practical applications in bone tissue engineering and biomedical segments.

5.
J Mol Model ; 27(6): 193, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34057615

RESUMO

Small aromatic molecules are precursors for several biological systems such as DNA, proteins, drugs, and are also present in several pollutants. The understanding of the interaction of these small aromatic molecules with pristine and functionalised graphene (fGr) can generate different applications. We performed ab initio simulations based on the density functional theory to evaluate the interaction between the aromatic compounds, benzene, benzoic acid, aniline and phenol, with pristine and fGr. The results show that the binding energy for all cases is less than 103.24 kJ/mol (1.07 eV) without substantial modification of the electronic properties, indicating that the interaction occurs through a physical adsorption regime. The results are promising because they suggest that pristine graphene and functionalised graphene are suitable for removing these pollutants, or for carrying molecules for biological applications influenced by π-π and H-bonds interaction.

6.
Nanomaterials (Basel) ; 11(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922093

RESUMO

The diseases that attack the tomato crop are a limiting factor for its production and are difficult to control or eradicate. Stem and fruit rot and leaf blight caused by Alternaria solani causes severe damage and substantial yield losses. Carbon nanotubes (CNTs) could be an alternative for the control of pathogens since they have strong antimicrobial activity, in addition to inducing the activation of the antioxidant defense system in plants. In the present study, multi-walled carbon nanotubes were evaluated on the incidence and severity of A. solani. Moreover, to the impact they have on the antioxidant defense system and the photosynthetic capacity of the tomato crop. The results show that the application of CNTs had multiple positive effects on tomato crop. CNTs decreased the incidence and severity of A. solani. Furthermore, CNTs increased the fruit yield of tomato crop and dry shoot biomass. The antioxidant system was improved, since the content of ascorbic acid, flavonoids, and the activity of the glutathione peroxidase enzyme were increased. The net photosynthesis and water use efficiency were also increased by the application of CNTs. CNTs can be an option to control A. solani in tomato crop, and diminish the negative impact of this pathogen.

7.
Colloids Surf B Biointerfaces ; 203: 111767, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33878553

RESUMO

Nanotechnology has gained significant importance in different fields of medical, electronic, and environmental science. This technology is founded on the use of materials at the nanoscale scale (1-100 nanometers) for various purposes, particularly in the biomedical area, where its application is growing daily due to the need of materials with advanced properties. Over the past few years, there has been a growing use for graphene and its derivative composite materials. However, different physico-chemical properties influence its biological response; therefore, further studies to explain the interactions of these nanomaterials with biological systems are critical. This review presents the current advances in the applications of graphene in biomedicine with a focus on the physico-chemical characteristics of the graphene family and their influences on biological interactions.


Assuntos
Grafite , Nanoestruturas , Nanotecnologia
8.
Anal Bioanal Chem ; 413(12): 3315-3327, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33733701

RESUMO

The continued contamination of water sources by pesticides is a problem that involves the life of aquatic organisms and human health, especially in countries whose economy is based on agriculture. The need to know the quality of drinking water under these circumstances is a priority for the public health of any community. Passive sampling methods allow the determination of long-term environmental pollutants through a single sample collection, reducing time and cost of analyses. One advantage of passive sampling is that it is possible to calculate a time-weighted average (TWA) concentration value or an equilibrium concentration value, depending on the type of device used and the exposure time. Passive sampling techniques using carbon nanomaterials (CNMs) have a high potential for pesticide sampling in aquatic systems. A device for passive sampling manufactured with CNMs in a microextraction system and recyclable materials was calibrated in laboratory exposure conditions over 15 days. The calibration results showed linear accumulation periods between 5 and 10 days. Sampling rates were between 0.014 and 0.146 mL day-1. The sampler was field-tested in the San Francisco river basin in the state of Minas Gerais in Brazil for 7 days. This research allowed for the detection and calculation of TWA concentrations for organochlorine pesticides such as α-HCH, 4,4-DDE, and 4,4-DD in water sources. The manufactured device demonstrated greater sensitivity than the grab sampling processes for the detection of pesticides. The performed passive sampling system using gas chromatography/mass spectrometry (GC/MS) technique allowed for the collection, detection, identification, and quantification of 26 pesticides.

9.
J Sep Sci ; 44(6): 1148-1173, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33006433

RESUMO

Bisphenol A is a synthetic compound widely used in industry, in the production of polycarbonate, epoxy resins, and thermal paper, among others. Its annual production is estimated at millions of tons per year, demonstrating its importance. Despite its wide application in various everyday products, once in the environment (due to its disposal or leaching), it has high toxicity to humans and animal life, and this problem has been well known for years. Given this problem, many researchers seek alternatives for its monitoring in matrices such as natural water, waste, food, and biological matrices. For this, new advanced materials have been developed, characterized, and applied in creative ways for the preparation of samples for the determination of bisphenol A. This article aims to present some of these important and recent applications, describing the use of molecularly imprinted polymers, metal and covalent organic frameworks, ionic liquids and magnetic ionic liquids, and deep eutectic solvents as creative solutions in sample preparation for the long-standing problem of bisphenol A determination.

10.
Mater Sci Eng C Mater Biol Appl ; 116: 111140, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32806307

RESUMO

This work describes the application of a glassy carbon electrode (GCE) modified with imidazole functionalized carbon nanotubes (CNT-H-IMZ) for Paraoxon (PX) determination in samples of commercial, fresh and 100% orange juice. Homemade multi-walled CNTs were treated according to the Hummers procedure to oxidize graphite and later chemically functionalized with imidazole groups. Modified electrodes with CNT-H-IMZ presented a high peak current of PX reduction and an electrocatalytic effect in comparison to the other electrodes. This behavior was associated with the synergistic contribution of IMZ and CNT that increases the electrochemical activity of PX. Repeatability and reproducibility studies showed that the relative peak current values did not show significant differences between them, less than 10%, and it was possible to define that the diffusional process is the mechanism that limits the electrode mass transport. After the optimization of parameters inherent to the methodology and the voltammetric technique, the proposed device presented a linear region of 1.0 to 16.0 µM-1 (R2 = 0.99), presenting LOD and LOQ as 120 and 400 nM-1, respectively. The method proposed was successfully applied to PX determination in spiked samples.


Assuntos
Nanotubos de Carbono , Paraoxon , Técnicas Eletroquímicas , Eletrodos , Imidazóis , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA