Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 192: 736-744, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655585

RESUMO

The spontaneous aggregation of chitosan and carboxymethylchitosan polymers can be advantageous for the enzyme confinement on these colloidal systems during immobilization processes. The initial crucial step involves the polymer-enzyme adduct formation. The objective here is to determine the interactions that drive the adduct formation between these polymers and ß-galactosidase from Bacillus circulans. The chemical characterization of chitosan and its carboxymethyl-derivate allowed to explain their colloidal behavior and design the four-unit fragments ligands used for the docking study. The deacetylation degree (0.6 times lower), isoelectric point (5.2 instead 6.4) and substitution degree (DSO = 1.779 and DS2N = 0.441) of carboxymenthylchitosan are due to the hydroxide concentration (>25%) and 30 °C modification conditions. Favorable Van der Waals and H-bond interactions between chitosan-ß-galactosidase and contribution of electrostatic attraction mediated by calcium ions for carboxymethylchitosan-ß-galactosidase explained the zeta potential and dynamic light scattering results at pH 7.0. These interactions occur onto the external surface of this galactosidase, without affecting the catalytic activity. A cross-linked enzyme aggregates-type model was proposed for the formation of the adducts, based on the complementary experimental-docking results. They contribute understanding the behavior of polyelectrolyte chitosan-derived matrices for enzyme immobilization.


Assuntos
Biopolímeros/química , Quitosana/análogos & derivados , Quitosana/química , beta-Galactosidase/química , Biocatálise , Fenômenos Químicos , Enzimas Imobilizadas , Conformação Molecular , Simulação de Dinâmica Molecular , Análise Espectral , Relação Estrutura-Atividade
2.
Int J Biol Macromol ; 166: 459-470, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33127547

RESUMO

Wound repair is a complex process that calls for strategies to allow a rapid and effective regeneration of injured skin, which has stimulated the research of advanced wound dressings. Herein, highly porous membranes of N,O-carboxymethylchitosan (CMCh), and poly (vinyl alcohol) (PVA) were successfully prepared via a green and facile freeze-drying method of blend solutions containing CMCh/PVA at weight ratio 25/75. Membranes composed only by CMCh were also prepared and genipin was used for crosslinking. Different contents of TiO2 nanoparticles were incorporated to both type of membranes, which were characterized in terms of morphology, porosity (Φ), swelling capacity (S.C.), mechanical properties, susceptibility to lysozyme degradation and in vitro cytotoxicity toward human fibroblast (HDFn) and keratinocytes (HaCaT) cells. Larger apparent pores were observed in the surface of the genipin-crosslinked CMCh membrane, which resulted in higher porosity (Φ ≈ 76%) and swelling capacity (S.C. ≈ 1720%) as compared to CMCh/PVA membrane (Φ ≈ 68%; S.C. ≈ 1660%). The porosity of both types of membranes decreased upon the addition of TiO2 nanoparticles while swelling capacity increased. Due to their high porosity and swelling capacity, adequate mechanical properties, controlled degradability, and cytocompatibility, such carboxymethylchitosan-based membranes are potentially useful as wound dressings.


Assuntos
Bandagens , Quitosana/análogos & derivados , Membranas Artificiais , Cicatrização/efeitos dos fármacos , Morte Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/farmacologia , Reagentes de Ligações Cruzadas/química , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Células HaCaT , Humanos , Iridoides/química , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Muramidase/metabolismo , Álcool de Polivinil/química , Porosidade , Espectrometria por Raios X , Estresse Mecânico , Titânio/química
3.
Int J Biol Macromol ; 155: 614-624, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32246959

RESUMO

The purpose of this study was to synthesize a new magnetic material with antimicrobial properties, incorporated into a biopolymer and containing silver nanoparticles (Ag NP) prepared extract of Eugenia umbelliflora as a reducing agent. Silver nanoparticles incorporated into magnetic nanocomposite O-carboxymethylchitosan/y-Fe2O3/Ag0 (CMAgE) composite were synthesized using an extract of E. umbelliflora. The antimicrobial activity of the pathogenic microorganism is reported here. The synthesized nanoparticles were also characterized, and quantified by Ag analysis. The minimum inhibitory concentrations (MIC) of CMAgE against Staphylococcus aureus, Escherichia coli, and Candida albicans were 16.5, 1000 and 500 µg/mL, respectively. The results show that these materials have significant synergistic effect on each other. The potential phytotoxic effect of the nanocomposites was evaluated using Cucumis sativus seeds. The positive values for seedling elongation inhibition (SEI) show that CMAgE and methanol extract of Eugenia umbelliflora (Eug) cause growth inhibition at a concentration of 1000 mg/L. The germination index (GI) values of 40% and 80% at 1000 mg/L, for CMAgE and Eug, respectively, showed inhibition of germination. CMAgE and Eug showed cytotoxic effects against Artemia salina nauplii, with LC50 values of 72.5 µL/mL and < 5.0 µL/mL respectively, after 48 h.


Assuntos
Antibacterianos/farmacologia , Artemia/crescimento & desenvolvimento , Quitosana/análogos & derivados , Eugenia/química , Compostos Ferrosos/química , Nanopartículas Metálicas/administração & dosagem , Extratos Vegetais/farmacologia , Prata/química , Animais , Antibacterianos/química , Artemia/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Quitosana/química , Nanopartículas Metálicas/química , Nanocompostos/administração & dosagem , Nanocompostos/química
4.
Carbohydr Polym ; 215: 137-142, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30981338

RESUMO

A water-soluble carboxymethylchitosan (CMC) was prepared in water/isopropanol (2/8) medium, at 10 °C, and characterized by UV-vis, FT-IR and NMR techniques. Its performance as an environmentally friendly scale inhibitor in oil wells was evaluated under the physicochemical conditions of oil wells in northeast of Brazil, by using SEM, visual compatibility and dynamic tube blocking test. The synthesis conditions led to a degree of carboxymethylation of 0.45 and water-solubility in all pH range studied (1-11). CMC acted as a scale inhibitor of CaCO3 under synthetic brine medium, presenting a minimum inhibitor concentration (MIC) of 170 ppm (1000 psi, T = 70 °C). SEM images showed that CaCO3 crystals were deformed by CMC, which was attributed to effective interactions of CMC through its carboxylate ions and lone pair of electrons on OH and NH2 groups with calcium ions, preventing scale deposition.

5.
Carbohydr Polym ; 205: 371-376, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446117

RESUMO

Biodegradability and ecotoxicity of products used in oil industry are of great relevance and corrosion inhibitor could not be an exception. In earlier reports, chitosan and some derivatives were evaluated as corrosion inhibitors at acid pH, mainly due to polymer solubility. An eco-friendly corrosion inhibitor with water solubility in all pH range should be ideal, as well as that could act under the high salinity of oil field environment. Thus, herein is presented the performance of a water-soluble carboxymethylchitosan (CMC) as corrosion inhibitor in presence of chlorides (3.5% NaCl) in 1020 carbon steel, without any addition of acid or base. CMC showed good properties as corrosion inhibitor in media containing Cl-, and behaved as an anodic inhibitor. CMC exhibited inhibitory efficiency of about 80% and 67%, according to Tafel curve and electrochemical impedance, respectively, which was attributed to chemisorption mechanism (ΔGads ≈ -45 kJ/mol).

6.
Int J Biol Macromol ; 107(Pt A): 42-51, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28870753

RESUMO

In this paper, nano-hybrid particles of Ag@Fe2O3 based on O-carboxymethylchitosan were successfully synthesized using different reducing agents (NaBH4, sucrose) and without reducing agent. The smallest silver nanoparticles were those prepared without reducing agent (∼5±3nm). The average size of silver particles prepared with NaBH4 is around 5-15nm, and for samples prepared with sucrose, the average particle size is 10-25nm. The magnetization curves are roughly reversible, indicating that γ-Fe2O3 nanoparticles transit to a superparamagnetic state. Nanocomposites subjected to antimicrobial tests showed great antimicrobial activity against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria, and good activity against the yeast Candida albicans and resistant strains of Staphylococcus aureus. The antibacterial behavior as a function of time was investigated in microbial growth kinetics, and the best nanocomposite was the one without reducing agent, which completely inhibited microbial growth for 48h.


Assuntos
Anti-Infecciosos/síntese química , Quitosana/análogos & derivados , Nanopartículas Metálicas/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Quitosana/síntese química , Quitosana/química , Quitosana/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Compostos Férricos/síntese química , Compostos Férricos/química , Compostos Férricos/farmacologia , Testes de Sensibilidade Microbiana , Nanocompostos/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
8.
Mater Sci Eng C Mater Biol Appl ; 59: 265-277, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26652373

RESUMO

Synthetic biomaterials based on calcium phosphates (CaP) have been widely studied for bone tissue reconstruction therapies, but no definitive solution that fulfills all of the required properties has been identified. Thus, this study reports the synthesis of composite membranes based on nanohydroxyapatite particles (nHA) embedded in chitosan (CHI) and O-carboxymethyl chitosan (CMC) matrices produced using a one-step co-precipitation method in water media. Biopolymers were used as capping ligands for simultaneously controlling the nucleation and growth of the nHA particles during the precipitation process and also to form the polymeric network of the biocomposites. The bionanocomposites were extensively characterized using light microscopy (LM), scanning and transmission electron microscopy (SEM/TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray micro-CT analysis (µCT), andMTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide) cell proliferation assays for cell cytotoxicity. The results demonstrated that the ligands used during the synthesis highly affected the composites produced, primarily due the changes in the mechanisms and kinetics of nucleation and growth of the HA particles at the nanoscale level. The SEMimages revealed that the use of carboxyl-functionalized chitosan (CMC) ligands significantly reduced the average size of theHA nanoparticles and caused the formation of a narrower size distribution (90±20nm) compared to theHAnanoparticles producedwith chitosan ligands (220±50nm). The same trend was verified by the AFM analysis,where the nHA particles were formed evenly dispersed in the polymer matrix. However, the CMC-based composites were more homogeneously distributed, which was endorsed by the images collected via X-ray micro-CT. The FTIR spectra and the XRD analysis indicated that nanosized hydroxyapatite was the predominant calcium phosphate phase produced during the co-precipitation aqueous process for both the chitosan and CMC biocomposites. These novel hybrid systems based on chitosan and chitosan-derivatives with nHA composites were non-cytotoxic to a human osteoblast-like model cell line (SAOS) according to MTT in vitro assays. Moreover, the CMC-nHA biocomposites revealed a striking improvement in the cell viability response compared to the CHI-nHA biocomposite, which was attributed to the much higher surface area caused by the refinement of the nanoparticles size. Thus, the results of this study demonstrate that these novel bionanocomposite membranes offer promising perspectives as biomaterials for potential repair and replacement of cartilage and bone tissues.


Assuntos
Quitosana/química , Durapatita/química , Teste de Materiais , Membranas Artificiais , Nanopartículas/química , Osteoblastos/metabolismo , Linhagem Celular Tumoral , Humanos , Osteoblastos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA