Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Cell Res ; 440(1): 114126, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38857838

RESUMO

Microtubules are components of the cytoskeleton that perform essential functions in eukaryotes, such as those related to shape change, motility and cell division. In this context some characteristics of these filaments are essential, such as polarity and dynamic instability. In trypanosomatids, microtubules are integral to ultrastructure organization, intracellular transport and mitotic processes. Some species of trypanosomatids co-evolve with a symbiotic bacterium in a mutualistic association that is marked by extensive metabolic exchanges and a coordinated division of the symbiont with other cellular structures, such as the nucleus and the kinetoplast. It is already established that the bacterium division is microtubule-dependent, so in this work, it was investigated whether the dynamism and remodeling of these filaments is capable of affecting the prokaryote division. To this purpose, Angomonas deanei was treated with Trichostatin A (TSA), a deacetylase inhibitor, and mutant cells for histone deacetylase 6 (HDAC6) were obtained by CRISPR-Cas9. A decrease in proliferation, an enhancement in tubulin acetylation, as well as morphological and ultrastructural changes, were observed in TSA-treated protozoa and mutant cells. In both cases, symbiont filamentation occurred, indicating that prokaryote cell division is dependent on microtubule dynamism.


Assuntos
Divisão Celular , Microtúbulos , Simbiose , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Microtúbulos/efeitos dos fármacos , Trypanosomatina/genética , Trypanosomatina/metabolismo , Trypanosomatina/ultraestrutura , Trypanosomatina/fisiologia , Ácidos Hidroxâmicos/farmacologia , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Bactérias/metabolismo , Bactérias/genética , Acetilação , Inibidores de Histona Desacetilases/farmacologia , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/genética , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura
2.
Viruses ; 15(3)2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36992459

RESUMO

One of the major evolutionary transitions that led to DNA replacing RNA as the primary informational molecule in biological systems is still the subject of an intense debate in the scientific community. DNA polymerases are currently split into various families. Families A, B, and C are the most significant. In bacteria and some types of viruses, enzymes from families A and C predominate, whereas family B enzymes are more common in Archaea, Eukarya, and some types of viruses. A phylogenetic analysis of these three families of DNA polymerase was carried out. We assumed that reverse transcriptase was the ancestor of DNA polymerases. Our findings suggest that families A and C emerged and organized themselves when the earliest bacterial lineages had diverged, and that these earliest lineages had RNA genomes that were in transition-that is, the information was temporally stored in DNA molecules that were continuously being produced by reverse transcription. The origin of DNA and the apparatus for its replication in the mitochondrial ancestors may have occurred independently of DNA and the replication machinery of other bacterial lineages, according to these two alternate modes of genetic material replication. The family C enzymes emerged in a particular bacterial lineage before being passed to viral lineages, which must have functioned by disseminating this machinery to the other lineages of bacteria. Bacterial DNA viruses must have evolved at least twice independently, in addition to the requirement that DNA have arisen twice in bacterial lineages. We offer two possible scenarios based on what we know about bacterial DNA polymerases. One hypothesis contends that family A was initially produced and spread to the other lineages through viral lineages before being supplanted by the emergence of family C and acquisition at that position of the principal replicative polymerase. The evidence points to the independence of these events and suggests that the viral lineage's acquisition of cellular replicative machinery was crucial for the establishment of a DNA genome in the other bacterial lineages, since these viral lineages may have served as a conduit for the machinery's delivery to other bacterial lineages that diverged with the RNA genome. Our data suggest that family B initially established itself in viral lineages and was transferred to ancestral Archaea lineages before the group diversified; thus, the DNA genome must have emerged first in this cellular lineage. Our data point to multiple evolutionary steps in the origins of DNA polymerase, having started off at least twice in the bacterial lineage and once in the archaeal lineage. Given that viral lineages are implicated in a significant portion of the distribution of DNA replication equipment in both bacterial (families A and C) and Archaeal lineages (family A), our data point to a complex scenario.


Assuntos
Bacteriófagos , Vírus , Filogenia , Evolução Molecular , DNA Polimerase Dirigida por DNA/genética , Vírus/genética , Bactérias/genética , DNA , Archaea/genética , Bacteriófagos/genética , RNA
3.
J Theor Biol ; 551-552: 111233, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-35934091

RESUMO

A theoretical study of cell evolution is presented here. By using a toolbox containing an intracellular catalytic reaction network model and a mutation-selection process, four distinct phases of self-organization were unveiled. First, the nutrients prevail as the central substrate of the chemical reactions. Second, the cell becomes a small-world. Third, a highly connected core component emerges, concurrently with the nutrient carriers becoming the central product of reactions. Finally, the cell reaches a steady configuration where the concentrations of the core chemical species are described by Zipf's law.


Assuntos
Modelos Teóricos
4.
Protist ; 168(2): 253-269, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28371652

RESUMO

The mutualistic relationship between trypanosomatids and their respective endosymbiotic bacteria represents an excellent model for studying metabolic co-evolution since the symbiont completes essential biosynthetic routes of the host cell. In this work, we investigated the influence of the endosymbiont on the energy metabolism of Strigomonas culicis by comparing the wild strain with aposymbiotic protists. The bacterium maintains a frequent and close association with glycosomes, which are distributed around the prokaryote. Furthermore, 3D reconstructions revealed that the shape and distribution of glycosomes are different in symbiont-bearing protists compared to symbiont-free cells. Results of bioenergetic assays showed that the presence of the symbiont enhances the O2 consumption of the host cell. When the quantity of intracellular or released glycerol was evaluated, the aposymbiotic strain presented higher values when compared to symbiont-containing cells. Furthermore, inhibition of oxidative phosphorylation by potassium cyanide increased the rate of glycerol release and slightly diminished the ATP content in cells without the symbiont, indicating that the host trypanosomatid enhances its fermentative activity when the bacterium is lost.


Assuntos
Fenômenos Fisiológicos Bacterianos , Simbiose , Trypanosomatina/microbiologia , Metabolismo Energético
5.
Front Microbiol ; 6: 520, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26082757

RESUMO

Mutualism is defined as a beneficial relationship for the associated partners and usually assumes that the symbiont number is controlled. Some trypanosomatid protozoa co-evolve with a bacterial symbiont that divides in coordination with the host in a way that results in its equal distribution between daughter cells. The mechanism that controls this synchrony is largely unknown, and its comprehension might provide clues to understand how eukaryotic cells evolved when acquiring symbionts that later became organelles. Here, we approached this question by studying the effects of inhibitors that affect the host exclusively in two symbiont-bearing trypanosomatids, Strigomonas culicis and Angomonas deanei. We found that inhibiting host protein synthesis using cycloheximide or host DNA replication using aphidicolin did not affect the duplication of bacterial DNA. Although the bacteria had autonomy to duplicate their DNA when host protein synthesis was blocked by cycloheximide, they could not complete cytokinesis. Aphidicolin promoted the inhibition of the trypanosomatid cell cycle in the G1/S phase, leading to symbiont filamentation in S. culicis but not in A. deanei. Treatment with camptothecin blocked the host protozoa cell cycle in the G2 phase and induced the formation of filamentous symbionts in both species. Oryzalin, which affects host microtubule polymerization, blocked trypanosomatid mitosis and abrogated symbiont division. Our results indicate that host factors produced during the cell division cycle are essential for symbiont segregation and may control the bacterial cell number.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA