Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Food Chem ; 457: 140170, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38936130

RESUMO

This study aimed to evaluate the effect of extrusion and of open-pan cooking on whole germinated and non-germinated grains of pearl millet (Pennisetum glaucum L. R. Br.), on its chemical-nutritional composition and in vitro iron bioavailability. The experimental design consisted of three flours: non-germination open-pan cooked millet flour (NGOPCMF), germination open-pan cooked millet flour (GOPCMF), and extrusion cooked millet flour (ECMF). The ECMF increased the carbohydrates, iron, manganese, diosmin, and cyanidin and decreased the total dietary fiber, resistant starch, lipids, and total vitamin E, in relation to NGOPCMF. The GOPCMF increased the lysine and vitamin C and decreased the phytate, lipids, total phenolic, total vitamin E, and riboflavin concentration, in relation to NGOPCMF. Furthermore, germinated cooked millet flour and extruded millet flour improved iron availability in vitro compared to non-germinated cooked millet flour. GOPCMF and ECMF generally preserved the chemical-nutritional composition of pearl millet and improved in vitro iron bioavailability; therefore, they are nutritionally equivalent and can be used to develop pearl millet-based products.


Assuntos
Disponibilidade Biológica , Culinária , Farinha , Germinação , Ferro , Pennisetum , Pennisetum/química , Pennisetum/metabolismo , Pennisetum/crescimento & desenvolvimento , Ferro/análise , Ferro/metabolismo , Farinha/análise , Valor Nutritivo , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Fibras na Dieta/análise , Fibras na Dieta/metabolismo
2.
J Agric Food Chem ; 72(34): 19197-19218, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38803291

RESUMO

Cereal grains play an important role in human health as a source of macro- and micronutrients, besides phytochemicals. The metabolite diversity was investigated in cereal crops and their milling fractions by untargeted metabolomics ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) of 69 samples: 7 species (barley, oat, pearl millet, rye, sorghum, triticale, and wheat), 23 genotypes, and 4 milling fractions (husk, bran, flour, and wholegrain). Samples were also analyzed by in vitro antioxidant activity. UHPLC-MS/MS signals were processed using XCMS, and metabolite annotation was based on SIRIUS and GNPS libraries. Bran and husk showed the highest antioxidant capacity and phenolic content/diversity. The major metabolite classes were phenolic acids, flavonoids, fatty acyls, and organic acids. Sorghum, millet, barley, and oats showed distinct metabolite profiles, especially related to the bran fraction. Molecular networking and chemometrics provided a comprehensive insight into the metabolic profiling of cereal crops, unveiling the potential of coproducts and super cereals such as sorghum and millet as sources of polyphenols.


Assuntos
Antioxidantes , Grão Comestível , Espectrometria de Massas em Tandem , Antioxidantes/metabolismo , Antioxidantes/química , Antioxidantes/análise , Grão Comestível/química , Grão Comestível/metabolismo , Cromatografia Líquida de Alta Pressão , Sorghum/química , Sorghum/metabolismo , Avena/química , Avena/metabolismo , Avena/genética , Triticum/química , Triticum/metabolismo , Triticum/genética , Flavonoides/metabolismo , Flavonoides/análise , Flavonoides/química , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Milhetes/química , Milhetes/metabolismo , Milhetes/genética , Hordeum/química , Hordeum/metabolismo , Hordeum/genética , Sementes/química , Sementes/metabolismo , Metabolômica , Produtos Agrícolas/química , Produtos Agrícolas/metabolismo , Produtos Agrícolas/genética
3.
Bioprocess Biosyst Eng ; 47(7): 1081-1094, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38739268

RESUMO

Wheat bran is one of the most abundant by-products from grain milling, which can be used as substrate for solid-state fermentation (SSF) to obtain enzymes able to convert this agro-industrial waste into glucose syrup, which in turn can be applied for the production of different food products. The present study aimed to determine centesimal composition of wheat bran, obtain enzymatic extract that converts wheat bran into wheat glucose syrup (WGS), produce rice flakes cereal bars (RFCB), and evaluate their nutritional composition and the presence of functional compounds, as well as their antioxidant potential. Determination of centesimal composition of wheat bran demonstrated its nutritional potential. Enzymatic extract was obtained and it converted wheat bran into WGS, which were applied to rice flakes producing RFCB. These cereal bars proved to be a source of dietary fiber (1.8 g) and soluble protein (7.2 g) while RCFB produced with corn glucose syrup did not present these nutritional components. In addition, RFCB produced with WGS showed polyphenolic compounds, among them flavonoids, which exhibited antioxidant activity by DPPH and ABTS radical scavenging (47.46% and 711.89 µM Trolox Equivalent/g, respectively), and iron ion reduction (71.70 µM Trolox equivalent/g). Final product showed a decrease in caloric value and sodium content. Therefore, the present study showed that the bioprocess of SSF yields a nutritional, ecological, and functional food product, which might be of great interest for food industry, adding nutritional and functional value to a well-stablished product.


Assuntos
Antioxidantes , Fibras na Dieta , Grão Comestível , Fermentação , Glucose , Glucose/metabolismo , Antioxidantes/metabolismo , Grão Comestível/química , Oryza/química , Triticum/metabolismo , Triticum/química
4.
Plants (Basel) ; 13(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611520

RESUMO

Intercropping legumes with cereals can lead to increased overall yield and optimize the utilization of resources such as water and nutrients, thus enhancing agricultural efficiency. Legumes possess the unique ability to acquire nitrogen (N) through both N2 fixation and from the available N in the soil. However, soil N can diminish the N2 fixation capacity of legumes. It is postulated that in intercropping, legumes uptake N mainly through N2 fixation, leaving more soil N available for cereals. The latter, in turn, has larger root systems, allowing it to explore greater soil volume and absorb more N, mitigating its adverse effects on N2 fixation in legumes. The goal of this study was to evaluate how the supply of N affects the intercropping of faba beans (Vicia faba L.) and peas (Pisum sativum L.) with wheat under varying plant densities and N levels. We measured photosynthetic traits, biomass production, the proportion of N derived from air (%Ndfa) in the shoot of the legumes, the N transferred to the wheat, and the land equivalent ratio (LER). The results revealed a positive correlation between soil N levels and the CO2 assimilation rate (An), chlorophyll content, and N balance index (NBI) in wheat. However, no significant effect was observed in legumes as soil N levels increased. Transpiration (E) increased in wheat intercropped with legumes, while stomatal conductance (gs) increased with N addition in all crops. Water use efficiency (WUE) decreased in faba beans intercropped with wheat as N increased, but it showed no significant change in wheat or peas. The shoot dry matter of wheat increased with the addition of N; however, the two legume species showed no significant changes. N addition reduced the %Ndfa of both legume species, especially in monoculture, with peas being more sensitive than faba beans. The intercropping of wheat alleviated N2 fixation inhibition, especially at high wheat density and increased N transfer to wheat, particularly with peas. The LER was higher in the intercropping treatments, especially under limited N conditions. It is concluded that in the intercropping of wheat with legumes, the N2 fixation inhibition caused by soil N is effectively reduced, as well as there being a significant N transfer from the legume to the wheat, with both process contributing to increase LER.

5.
Arch. latinoam. nutr ; 74(1): 1-9, mar. 2024. ilus, tab
Artigo em Espanhol | LILACS, LIVECS | ID: biblio-1555079

RESUMO

Introducción: En el Perú, el 90% de trigo es importado y su alta cotización internacional (390 dólares TN-1) implica la necesidad de encontrar sustitutos principalmente en productos de panificación que en su mayoría son formulados a base de trigo. Las harinas provenientes de frijol garbanzo y maíz amarillo, pueden mostrarse como alternativas potenciales y contribuir a mejorar el valor nutricional y sensorial del alimento. Objetivo: Desarrollar y evaluar nutricionalmente y sensorialmente una galleta tipo soda sustituyendo parcialmente la harina de trigo (HT) por harina de maíz amarillo (Zea mays) nixtamalizado (HMN) y garbanzo (Cicer arietinum) (HG). Materiales y métodos: Se realizaron tres formulaciones, F1: 70% HT, 20% HMN y 10% HG, F2: 70% HT, 10% HMN y 20% HG y F3: 50% HT, 20% HMN y 30% HG, la muestra control contenía 100% harina de trigo. Se determinaron contenido de proteínas, grasa y carbohidratos por análisis proximal, así como sabor y textura en el análisis sensorial. Resultados: F3 presentó mayor contenido de proteínas (11,88%), grasa (3,70%), y carbohidratos (71,08%), mientras que F2 fue percibido por los panelistas con un sabor moderadamente salado y de textura crujiente. Conclusiones: Se concluye que una sustitución mayor al 50% de harina de trigo por harina de leguminosa y harina de maíz nixtamalizada permite obtener galletas con alto contenido proteico y de textura similar a una galleta tipo soda comercial(AU)


Introduction: In Peru, 90% of wheat is imported and its high international price ($390 per TN) implies the need to find substitutes mainly in baking products that are mostly formulated with wheat. Flours from chickpeas and yellow corn can be shown as potential alternatives and contribute to improving the nutritional and sensory value of the food. Objective: Develop and nutritionally and sensorially evaluate a soda cracker partially substituting wheat flour (HT) with nixtamalized yellow corn flour (Zea mays) (HMN) and chickpea (Cicer arietinum) (HG). Material and methods: Three formulations were made, F1: 70% HT, 20% HMN and 10% HG, F2: 70% HT, 10% HMN and 20% HG and F3: 50% HT, 20% HMN and 30% HG, the control samplecontained 100% wheat flour. Protein, fat and carbohydrate content were determined by proximal analysis, as well as flavor and texture were determined in sensory analysis. Results: F3 presented a higher content of proteins (11.88%), fat (3.70%), and carbohydrates (71.08%), while F2 was perceived by the panelists as having a moderately salty flavor and crunchy texture. Conclusions: It is concluded that a substitution of more than 50% of wheat flour by leguminous flour allows obtaining crackers with high protein content and a texture similar to a commercial soda cracker(AU)


Assuntos
Triticum , Cicer , Farinha , Fabaceae , Indústria Alimentícia , Zea mays , Biscoitos , Alimentos , Manipulação de Alimentos
6.
Foods ; 13(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38338637

RESUMO

Licuri (Syagrus coronata) is an oilseed fruit common in the Brazilian caatinga and cerrado biomes. This fruit has high socioeconomic importance in the regions where it grows, being incorporated into exported animal feed and also into gastronomic preparations. Cereal bars are ready-to-eat highly consumed products with increased demand, commonly made with cereals and oilseeds such as licuri. In this sense, the incorporation of licuri in cereal bars may increase its socioeconomic value and expand its potential use. Thus, the objective of the study was to analyze acceptance and describe the sensory characteristics of cereal bars incorporated with licuri nuts. This study was conducted in four stages: (1) development of samples; (2) chemical composition analysis; (3) sensory analysis; and (4) statistical analysis. Cereal bars with licuri presented proportionally lower carbohydrate and protein content as the incorporation of licuri nut increased. However, the dietary fiber content increased. Further, 122 untrained panelists participated in the analysis. The results showed that samples with all proportions of incorporation of licuri nuts were acceptable. Furthermore, the sensory descriptors related to the presence of licuri were positively associated with product acceptance. In this way, this study demonstrates yet another possibility for use of the fruit, increasing its socioeconomic potential.

7.
J Sci Food Agric ; 104(5): 2971-2979, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38041655

RESUMO

BACKGROUND: Products fermented with lactic acid bacteria based on whole grain flours of red or white sorghum (Sorghum bicolor (L.) Moench) added with malted sorghum flour, or with skim milk (SM) were developed. Composition, protein amino acid profile, total acidity, pH, prebiotic potential, and bio-functional properties after simulation of gastrointestinal digestion were evaluated. RESULTS: In all cases, a pH of 4.5 was obtained in approximately 4.5 h. The products added with SM presented higher acidity. Products made only with sorghum presented higher total dietary fiber, but lower protein content than products with added SM, the last ones having higher lysine content. All products exhibited prebiotic potential, white sorghum being a better ingredient to promote the growth of probiotic bacteria. The addition of malted sorghum or SM significantly increased the bio-functional properties of the products: the sorghum fermented products added with SM presented the highest antioxidant (ABTS•+ inhibition, 4.7 ± 0.2 mM Trolox), antihypertensive (Angiotensin converting enzyme-I inhibition, 57.3 ± 0.5%) and antidiabetogenic (dipeptidyl-peptidase IV inhibition, 31.3 ± 2.1%) activities, while the products added with malted sorghum presented the highest antioxidant (reducing power, 1.6 ± 0.1 mg ascorbic acid equivalent/mL) and antidiabetogenic (α-amylase inhibition, 38.1 ± 0.9%) activities. CONCLUSION: The fermented whole grain sorghum-based products could be commercially exploited by the food industry to expand the offer of the three high-growth markets: gluten-free products, plant-based products (products without SM), and functional foods. © 2023 Society of Chemical Industry.


Assuntos
Lactobacillales , Sorghum , Lactobacillales/metabolismo , Sorghum/química , Grãos Integrais , Antioxidantes/metabolismo , Grão Comestível/metabolismo
8.
Foods ; 12(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37959021

RESUMO

Ryegrass is one such cereal that has been underutilized in human nutrition despite its high nutritional and functional value due to the presence of phytochemicals and dietary fibers. Exploiting ryegrass for human consumption is an exciting option, especially for countries that do not produce wheat, as it is easily adaptable and overgrows, making it economically viable. This study evaluated the nutritional content of γ-aminobutyric acid and bioactive compounds (total soluble phenolic compounds) and the physicochemical and technological properties of partially substituting maize flour (MF) with sprouted whole ryegrass flour (SR) in developing extrusion-cooked breakfast cereals. A completely randomized design with substitutions ranging from 0 to 20% of MF with SR was employed as the experimental strategy (p < 0.05). Partial incorporation of SR increased the content of γ-aminobutyric acid and total soluble phenolic compounds. Using sprouted grains can adversely affect the technological quality of extruded foods, mainly due to the activation of the amylolytic enzymes. Still, ryegrass, with its high dietary fiber and low lipid content, mitigates these negative effects. Consequently, breakfast cereals containing 4 and 8% SR exhibited better physicochemical properties when compared to SR12, SR16, SR20, and USR10, presenting reduced hardness and increased crispness, and were similar to SR0. These results are promising for ryegrass and suggest that combining the age-old sprouting process with extrusion can enhance the nutritional quality and bioactive compound content of cereal-based breakfast products while maintaining some technological parameters, especially crispiness, expansion index, water solubility index, and firmness, which are considered satisfactory.

9.
Plants (Basel) ; 12(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37653945

RESUMO

Selenium uptake and its content in soybean grains are affected by Se application methods. This study evaluated the impact of Se foliar application combined with a multi-nutrient fertilizer (MNF) on soybean, establishing a Se threshold to better understand the relationship between Se content in grains and yield of two genotypes (58I60 Lança and M5917). Two trials were conducted in a 4 × 2 factorial design: four Se rates (0, 10, 40, 80 g Se ha-1) and two methods of foliar Se application (Se combined or not with MNF). Foliar fertilizers were applied twice, at phenological stages of beginning of pod development and grain filling. Grain yield increased with the application of MNF, yet Se rates increased Se contents linearly up to 80 g Se ha-1, regardless of the use of MNF. Lança and M5917 genotypes had grain Se critical thresholds of 1.0 and 3.0 mg kg-1, respectively. The application of Se favored higher contents of K, P, and S in grains of genotype Lança and higher contents of Mn and Fe in grains of genotype M5917. Our findings highlight the importance of addressing different Se fertilization strategies as well as genotypic variations when assessing the effects of Se on soybean yield and grain quality.

10.
Food Chem X ; 18: 100744, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37397223

RESUMO

This paper introduces a method for determining the authenticity of commercial cereal bars based on trace element fingerprints. In this regard, 120 cereal bars were prepared using microwave-assisted acid digestion and the concentrations of Al, Ba, Bi, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Rb, Se, Sn, Sr, V, and Zn were later measured by ICP-MS. Results confirmed the suitability of the analyzed samples for human consumption. Multielemental data underwent autoscaling preprocessing for then applying PCA, CART, and LDA to input data set. LDA model accomplished the highest classification modeling performance with a success rate of 92%, making it the suitable model for reliable cereal bar prediction. The proposed method demonstrates the potential of trace element fingerprints in distinguishing cereal bar samples according to their type (conventional and gluten-free) and principal ingredient (fruit, yogurt, chocolate), thereby contributing to global efforts for food authentication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA