Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Environ Pollut ; 360: 124674, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39111532

RESUMO

As the most abundant pollinator insect in crops, Apis mellifera is a sentinel species of the pollinator communities. In these ecosystems, honey bees of different ages and developmental stages are exposed to diverse agrochemicals. However, most toxicological studies analyse the immediate effects during exposure. Late effects during adulthood after early exposure to pollutants during larval development are poorly studied in bees. The herbicide glyphosate (GLY) is the most applied pesticide worldwide. GLY has been detected in honey and beebread from hives near treated crops. Alterations in growth, morphogenesis or organogenesis during pre-imaginal development could induce late adverse effects after the emergence. Previous studies have demonstrated that GLY alters honey bee development, immediately affecting survival, growth and metabolism, followed by late teratogenic effects. The present study aims to determine the late impact on the behaviour and physiology of adult bees after pre-imaginal exposure to GLY. For that, we reared brood in vitro or in the hive with sub-chronic exposure to the herbicide with the average detected concentration in hives. Then, all newly emerged bees were reared in an incubator until maturity and tested when they became nurse-aged bees. Three behavioural responses were assessed as markers of cognitive and physiological impairment. Our results show i) decreased sensitivity to sucrose regardless of the rearing procedure, ii) increased choice latency and locomotor alterations during chemotaxis and iii) impaired associative learning. These late toxicity signs could indicate adverse effects on task performance and colony efficiency.


Assuntos
Comportamento Animal , Glicina , Glifosato , Herbicidas , Larva , Animais , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Glicina/análogos & derivados , Glicina/toxicidade , Herbicidas/toxicidade , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Comportamento Animal/efeitos dos fármacos
2.
Appl Environ Microbiol ; 90(6): e0076024, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38775579

RESUMO

Motile plant-associated bacteria use chemotaxis and dedicated chemoreceptors to navigate gradients in their surroundings and to colonize host plant surfaces. Here, we characterize a chemoreceptor that we named Tlp2 in the soil alphaproteobacterium Azospirillum brasilense. We show that the Tlp2 ligand-binding domain is related to the 4-helix bundle family and is conserved in chemoreceptors found in the genomes of many soil- and sediment-dwelling alphaproteobacteria. The promoter of tlp2 is regulated in an NtrC- and RpoN-dependent manner and is most upregulated under conditions of nitrogen fixation or in the presence of nitrate. Using fluorescently tagged Tlp2 (Tlp2-YFP), we show that this chemoreceptor is present in low abundance in chemotaxis-signaling clusters and is prone to degradation. We also obtained evidence that the presence of ammonium rapidly disrupts Tlp2-YFP localization. Behavioral experiments using a strain lacking Tlp2 and variants of Tlp2 lacking conserved arginine residues suggest that Tlp2 mediates chemotaxis in gradients of nitrate and nitrite, with the R159 residue being essential for Tlp2 function. We also provide evidence that Tlp2 is essential for root surface colonization of some plants (teff, red clover, and cowpea) but not others (wheat, sorghum, alfalfa, and pea). These results highlight the selective role of nitrate sensing and chemotaxis in plant root surface colonization and illustrate the relative contribution of chemoreceptors to chemotaxis and root surface colonization.IMPORTANCEBacterial chemotaxis mediates host-microbe associations, including the association of beneficial bacteria with the roots of host plants. Dedicated chemoreceptors specify sensory preferences during chemotaxis. Here, we show that a chemoreceptor mediating chemotaxis to nitrate is important in the beneficial soil bacterium colonization of some but not all plant hosts tested. Nitrate is the preferred nitrogen source for plant nutrition, and plants sense and tightly control nitrate transport, resulting in varying nitrate uptake rates depending on the plant and its physiological state. Nitrate is thus a limiting nutrient in the rhizosphere. Chemotaxis and dedicated chemoreceptors for nitrate likely provide motile bacteria with a competitive advantage to access this nutrient in the rhizosphere.


Assuntos
Azospirillum brasilense , Proteínas de Bactérias , Quimiotaxia , Nitratos , Raízes de Plantas , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Azospirillum brasilense/fisiologia , Nitratos/metabolismo , Raízes de Plantas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
Revista Digital de Postgrado ; 13(1): 389, abr. 2024. ilus
Artigo em Espanhol | LILACS, LIVECS | ID: biblio-1554970

RESUMO

Las infecciones del sistema nervioso central son potencialmente mortales, causadas por patógenos, como bacterias, virus y hongos. Para llegar hasta el cerebro, los microorganismos utilizan diversas vías y formas. Este patogeno es una bacteria grampositiva corta, flagelar e intracelular, con la capacidad de inducir su internalización en células fagocíticas (monocitos/macrófagos) y no fagocíticas (células endoteliales). Al infectar los macrófagos, estos microorganismos se valen de su capacidad de fijación, adhesión y migración transendotelial, para cruzar la barrera hematoencefálica, finalmente, generando meningitis bacteriana. En esta revisión describimos el mecanismo de caballo de Troya usado por Listeria monocytogenespara invadir el cerebro en el desarrollo de enfermedades infecciosas e incorporamos nuevos conocimientos sobre moléculas que intervienen en dicho mecanismo(AU)


Central nervous system infections are life-threatening, caused by pathogens such as bacteria, viruses and fungi. To access the brain, microorganisms use various mechanisms. Listeria monocytogenes is a short, flagellar and intracellular gram-positive bacterium, with the ability to induce its internalization in phagocytic (monocytes/macrophages) and non-phagocytic (endothelial cells) cells. By infecting macrophages, these microorganisms take advantage of their binding, adhesion, and transendothelial migrationcapacity to cross the blood-brain barrier, finally generating bacterial meningitis. In this review we describe the Trojan horse mechanism used by Listeria monocytogenesto invade the brain in the development of infectious diseases and we incorporate new knowledge about molecules that intervene in this mechanism(AU)


Assuntos
Barreira Hematoencefálica , Sistema Nervoso Central , Meningites Bacterianas , Listeria monocytogenes , Encefalite Viral
4.
Free Radic Res ; 58(4): 229-248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38588405

RESUMO

Selenium-containing compounds have emerged as promising treatment for redox-based and inflammatory diseases. This study aimed to investigate the in vitro and in vivo anti-inflammatory activity of a novel diselenide named as dibenzyl[diselanediyIbis(propane-3-1diyl)] dicarbamate (DD). DD reacted with HOCl (k = 9.2 x 107 M-1s-1), like glutathione (k = 1.2 x 108 M-1s-1), yielding seleninic and selenonic acid derivatives, and it also decreased HOCl formation by activated human neutrophils (IC50=4.6 µM) and purified myeloperoxidase (MPO) (IC50=3.8 µM). However, tyrosine, MPO-I and MPO-II substrates, did not restore HOCl formation in presence of DD. DD inhibited the oxidative burst in dHL-60 cells with no toxicity up to 25 µM for 48h. Next, an intraperitoneal administration of 25, 50, and 75 mg/kg DD decreased total leukocyte, neutrophil chemotaxis, and inflammation markers (MPO activity, lipid peroxidation, albumin exudation, nitrite, TNF-α, IL-1ß, CXCL1/KC, and CXCL2/MIP-2) on a murine model of carrageenan-induced peritonitis. Likewise, 50 mg/kg DD (i.p.) decreased carrageenan-induced paw edema over 5h. Histological and immunohistochemistry analyses of the paw tissue showed decreased neutrophil count, edema area, and MPO, carbonylated, and nitrated protein staining. Furthermore, DD treatment decreased the fMLP-induced chemotaxis of human neutrophils (IC50=3.7 µM) in vitro with no toxicity. Lastly, DD presented no toxicity in a single-dose model using mice (50 mg/kg, i.p.) over 15 days and in Artemia salina bioassay (50 to 2000 µM), corroborating findings from in silico toxicological study. Altogether, these results demonstrate that DD attenuates carrageenan-induced inflammation mainly by reducing neutrophil migration and the resulting damage from MPO-mediated oxidative burst.


Assuntos
Carragenina , Inflamação , Infiltração de Neutrófilos , Animais , Camundongos , Humanos , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Infiltração de Neutrófilos/efeitos dos fármacos , Masculino , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Edema/tratamento farmacológico , Edema/induzido quimicamente , Peroxidase/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/uso terapêutico , Ácido Hipocloroso
5.
Front Biosci (Elite Ed) ; 16(1): 9, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38538528

RESUMO

In most ecosystems, plants establish complex symbiotic relationships with organisms, such as bacteria and fungi, which significantly influence their health by promoting or inhibiting growth. These relationships involve biochemical exchanges at the cellular level that affect plant physiology and have evolutionary implications, such as species diversification, horizontal gene transfer, symbiosis and mutualism, environmental adaptation, and positive impacts on community structure and biodiversity. For these reasons, contemporary research, moving beyond observational studies, seeks to elucidate the molecular basis of these interactions; however, gaps in knowledge remain. This is particularly noticeable in understanding how plants distinguish between beneficial and antagonistic microorganisms. In light of the above, this literature review aims to address some of these gaps by exploring the key mechanisms in common interspecies relationships. Thus, our study presents novel insights into these evolutionary archetypes, focusing on the antibiosis process and microbial signaling, including chemotaxis and quorum sensing. Additionally, it examined the biochemical basis of endophytism, pre-mRNA splicing, and transcriptional plasticity, highlighting the roles of transcription factors and epigenetic regulation in the functions of the interacting organisms. These findings emphasize the importance of understanding these confluences in natural environments, which are crucial for future theoretical and practical applications, such as improving plant nutrition, protecting against pathogens, developing transgenic crops, sustainable agriculture, and researching disease mechanisms. It was concluded that because of the characteristics of the various biomolecules involved in these biological interactions, there are interconnected molecular networks in nature that give rise to different ecological scaffolds. These networks integrate a myriad of functionally organic units that belong to various kingdoms. This interweaving underscores the complexity and multidisciplinary integration required to understand plant-microbe interactions at the molecular level. Regarding the limitations inherent in this study, it is recognized that researchers face significant obstacles. These include technical difficulties in experimentation and fieldwork, as well as the arduous task of consolidating and summarizing findings for academic articles. Challenges range from understanding complex ecological and molecular dynamics to unbiased and objective interpretation of diverse and ever-changing literature.


Assuntos
Ecossistema , Epigênese Genética , Plantas , Simbiose , Bactérias
6.
Microb Ecol ; 87(1): 52, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498218

RESUMO

The use of algae for industrial, biotechnological, and agricultural purposes is spreading globally. Scenedesmus species can play an essential role in the food industry and agriculture due to their favorable nutrient content and plant-stimulating properties. Previous research and the development of Scenedesmus-based foliar fertilizers raised several questions about the effectiveness of large-scale algal cultivation and the potential effects of algae on associative rhizobacteria. In the microbiological practice applied in agriculture, bacteria from the genus Azospirillum are one of the most studied plant growth-promoting, associative, nitrogen-fixing bacteria. Co-cultivation with Azospirillum species may be a new way of optimizing Scenedesmus culturing, but the functioning of the co-culture system still needs to be fully understood. It is known that Azospirillum brasilense can produce indole-3-acetic acid, which could stimulate algae growth as a plant hormone. However, the effect of microalgae on Azospirillum bacteria is unclear. In this study, we investigated the behavior of Azospirillum brasilense bacteria in the vicinity of Scenedesmus sp. or its supernatant using a microfluidic device consisting of physically separated but chemically coupled microchambers. Following the spatial distribution of bacteria within the device, we detected a positive chemotactic response toward the microalgae culture. To identify the metabolites responsible for this behavior, we tested the chemoeffector potential of citric acid and oxaloacetic acid, which, according to our HPLC analysis, were present in the algae supernatant in 0.074 mg/ml and 0.116 mg/ml concentrations, respectively. We found that oxaloacetic acid acts as a chemoattractant for Azospirillum brasilense.


Assuntos
Azospirillum brasilense , Scenedesmus , Scenedesmus/metabolismo , Microfluídica , Ácido Oxaloacético/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo
7.
Can J Microbiol ; 70(5): 150-162, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427979

RESUMO

This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that Rhizobium leguminosarum bv. viciae 3841 enhanced growth of pea shoots, while Azospirillum brasilense Sp7 supported growth of pea, tomato, and cucumber roots. Chemical analysis of exudates after 1 day of seedling incubation in water yielded differences between the exudates of the three plants. Most remarkably, cucumber seedling exudate did not contain detectable sugars. All exudates contained amino acids, nucleobases/nucleosides, and organic acids, among other compounds. Cucumber seedling exudate contained reduced glutathione. Migration on semi solid agar plates containing individual exudate compounds as putative chemoattractants revealed that R. leguminosarum bv. viciae was more selective than A. brasilense, which migrated towards any of the compounds tested. Migration on semi solid agar plates containing 1:1 dilutions of seedling exudate was observed for each of the combinations of bacteria and exudates tested. Likewise, R. leguminosarum bv. viciae and A. brasilense grew on each of the three seedling exudates, though at varying growth rates. We conclude that the seedling exudates of peas, tomatoes, and cucumbers contain everything that is needed for their symbiotic bacteria to migrate and grow on.


Assuntos
Azospirillum brasilense , Cucumis sativus , Pisum sativum , Rhizobium leguminosarum , Plântula , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , Cucumis sativus/microbiologia , Cucumis sativus/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Rhizobium leguminosarum/crescimento & desenvolvimento , Rhizobium leguminosarum/metabolismo , Azospirillum brasilense/crescimento & desenvolvimento , Azospirillum brasilense/metabolismo , Pisum sativum/microbiologia , Pisum sativum/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Quimiotaxia , Exsudatos de Plantas/química , Exsudatos de Plantas/metabolismo
8.
J Bacteriol ; 205(6): e0048422, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37255486

RESUMO

Chemotaxis in Bacteria and Archaea depends on the presence of hexagonal polar arrays composed of membrane-bound chemoreceptors that interact with rings of baseplate signaling proteins. In the alphaproteobacterium Azospirillum brasilense, chemotaxis is controlled by two chemotaxis signaling systems (Che1 and Che4) that mix at the baseplates of two spatially distinct membrane-bound chemoreceptor arrays. The subcellular localization and organization of transmembrane chemoreceptors in chemotaxis signaling clusters have been well characterized but those of soluble chemoreceptors remain relatively underexplored. By combining mutagenesis, microscopy, and biochemical assays, we show that the cytoplasmic chemoreceptors AerC and Tlp4b function in chemotaxis and localize to and interact with membrane-bound chemoreceptors and chemotaxis signaling proteins from both polar arrays, indicating that soluble chemoreceptors are promiscuous. The interactions of AerC and Tlp4b with polar chemotaxis signaling clusters are not equivalent and suggest distinct functions. Tlp4b, but not AerC, modulates the abundance of chemoreceptors within the signaling clusters through an unknown mechanism. The AerC chemoreceptor, but not Tlp4b, is able to traffic in and out of chemotaxis signaling clusters depending on its level of expression. We also identify a role of the chemoreceptor composition of chemotaxis signaling clusters in regulating their polar subcellular organization. The organization of chemotaxis signaling proteins as large membrane-bound arrays underlies chemotaxis sensitivity. Our findings suggest that the composition of chemoreceptors may fine-tune chemotaxis signaling not only through their chemosensory specificity but also through their role in the organization of polar chemotaxis signaling clusters. IMPORTANCE Cytoplasmic chemoreceptors represent about 14% of all chemoreceptors encoded in bacterial and archaeal genomes, but little is known about how they interact with and function in large polar assemblies of membrane-bound chemotaxis signaling clusters. Here, we show that two soluble chemoreceptors with a role in chemotaxis are promiscuous and interact with two distinct membrane-bound chemotaxis signaling clusters that control all chemotaxis responses in Azospirillum brasilense. We also found that any change in the chemoreceptor composition of chemotaxis signaling clusters alters their polar organization, suggesting a dynamic interplay between the sensory specificity of chemotaxis signaling clusters and their polar membrane organization.


Assuntos
Azospirillum brasilense , Quimiotaxia , Quimiotaxia/fisiologia , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Proteínas de Bactérias/metabolismo , Células Quimiorreceptoras , Citoplasma/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/genética
9.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047288

RESUMO

Mast cells (MCs) are the main participants in the control of immune reactions associated with inflammation, allergies, defense against pathogens, and tumor growth. Bioactive lipids are lipophilic compounds able to modulate MC activation. Here, we explored some of the effects of the bioactive lipid lysophosphatidylinositol (LPI) on MCs. Utilizing murine bone marrow-derived mast cells (BMMCs), we found that LPI did not cause degranulation, but slightly increased FcεRI-dependent ß-hexosaminidase release. However, LPI induced strong chemotaxis together with changes in LIM kinase (LIMK) and cofilin phosphorylation. LPI also promoted modifications to actin cytoskeleton dynamics that were detected by an increase in cell size and interruptions in the continuity of the cortical actin ring. The chemotaxis and cortical actin ring changes were dependent on GPR55 receptor activation, since the specific agonist O1602 mimicked the effects of LPI and the selective antagonist ML193 prevented them. The LPI and O1602-dependent stimulation of BMMC also led to VEGF, TNF, IL-1α, and IL-1ß mRNA accumulation, but, in contrast with chemotaxis-related processes, the effects on cytokine transcription were dependent on GPR55 and cannabinoid (CB) 2 receptors, since they were sensitive to ML193 and to the specific CB2 receptor antagonist AM630. Remarkably, GPR55-dependent BMMC chemotaxis was observed towards conditioned media from distinct mouse and human cancer cells. Our data suggest that LPI induces the chemotaxis of MCs and leads to cytokine production in MC in vitro with the differential participation of GPR55 and CB2 receptors. These effects could play a significant role in the recruitment of MCs to tumors and the production of MC-derived pro-angiogenic factors in the tumor microenvironment.


Assuntos
Receptor CB2 de Canabinoide , Receptores Acoplados a Proteínas G , Camundongos , Humanos , Animais , Receptores Acoplados a Proteínas G/genética , Receptor CB2 de Canabinoide/genética , Quimiotaxia , Mastócitos , Citocinas , Actinas , Receptores de Canabinoides/genética , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/fisiologia
10.
Theriogenology ; 195: 176-186, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36335721

RESUMO

Before ovulation, the ovary exhibits signs of local inflammation. However, the effects of adrenocorticotropin (ACTH) on the complexity of this inflammatory response are not yet well described. Thus, the aim of this study was to evaluate the effects of ACTH administered to dairy cows during the preovulatory period on the local distribution of different subsets of leukocytes infiltrated in the ovary, along with the gene expression of relevant chemokines (C-C motif chemokine ligand-2 (CCL2), C-X-C motif chemokine ligand-8 (CXCL8), CCL25 and CXCL1) involved in leukocyte chemotaxis and blood perfusion on the follicular wall of dominant follicles. Also, the direct effect of ACTH on chemokine gene expression was addressed in cultured antral follicular walls. For this purpose, both an in vivo and an in vitro experiment were performed. For the in vivo experiment, exogenous ACTH (100 IU) was administered intramuscularly to Holstein cows (n = 12) during proestrus every 12 h for four days before ovulation, when ovariectomy was performed (day 18). Daily ovarian Doppler ultrasonography was used to evaluate the percentage of irrigated area, the pulsatility index and the resistance index in the dominant follicles. The distribution of monocytes-macrophages (CD14), T- (CD2) and B-lymphocytes (CD79a) and granulocytes (CH138A) in the ovary was analyzed by immunohistochemistry. In follicular wall samples, gene expression of CCL2, CXCL8, CXCL1 and CCL25 was evaluated, whereas IL-17A expression was analyzed by Western blot. The total number of CD14, CD79a and CD2 infiltrated cells was lower in the ACTH-treated group than in the control group (p < 0.05). Chemokine gene expression showed lower mRNA of CCL2, CCL25 and CXCL1 (p < 0.05) in the ACTH-treated group. Meanwhile, IL-17A protein expression and hemodynamic parameters were similar between groups (p > 0.05). In the in vitro assay, antral follicular walls were stimulated with ACTH to corroborate the gene expression profile of chemokines. mRNA expression of CCL2 tended to be lower in the stimulated follicular walls (p = 0.092). Our results suggest that exogenous ACTH stimulus during the preovulatory period reduces the number of infiltrated leukocytes in the bovine ovary and this could be due to a lower chemotaxis capacity of the ovary.


Assuntos
Hormônio Adrenocorticotrópico , Ovário , Feminino , Bovinos , Animais , Hormônio Adrenocorticotrópico/farmacologia , Interleucina-17 , Ligantes , Leucócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA