Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(38): 50722-50732, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39102133

RESUMO

Copper oxide nanoparticles (CuONPs) have been produced on a large scale because they can be applied across various fields, especially in nano-enabled healthcare and agricultural products. However, the increasing use of CuONPs leads to their release and accumulation into the environment. The CuONPs uptaken by seeds and their implications on germination behavior have been reported, but little is known or understood about their impact on photosynthesis in seed tissues. To fill knowledge gaps, this study evaluated the effects of CuONP concentrations (0-300 mg L-1) on the photosynthetic activity of Inga laurina seeds. The microscopy data showed that CuONPs had an average size distribution of 57.5 ± 0.7 nm. Copper ion release and production of reactive oxygen species (ROS) by CuONPs were also evaluated by dialysis and spectroscopy experiments, respectively. CuONPs were not able to intrinsically generate ROS and released a low content of Cu2⁺ ions (4.5%, w/w). Time evolution of chlorophyll fluorescence imaging and laser-induced fluorescence spectroscopy were used to monitor the seeds subjected to nanoparticles during 168 h. The data demonstrate that CuONPs affected the steady-state maximum chlorophyll fluorescence ( F m ' ), the photochemical efficiency of photosystem II ( F v / F m ), and non-photochemical quenching ( NPQ ) of Inga laurina seeds over time. Besides, the NPQ significantly increased at the seed development stage, near the root protrusion stage, probably due to energy dissipation at this germination step. Additionally, the results indicated that CuONPs can change the oscillatory rhythms of energy dissipation of the seeds, disturbing the circadian clock. In conclusion, the results indicate that CuONPs can affect the photosynthetic behavior of I. laurina seeds. These findings open opportunities for using chlorophyll fluorescence as a non-destructive tool to evaluate nanoparticle impact on photosynthetic activity in seed tissues.


Assuntos
Cobre , Fabaceae , Fotossíntese , Sementes , Fotossíntese/efeitos dos fármacos , Sementes/efeitos dos fármacos , Fabaceae/efeitos dos fármacos , Germinação/efeitos dos fármacos , Nanopartículas , Clorofila/metabolismo
2.
Antibiotics (Basel) ; 13(7)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39061332

RESUMO

Campylobacter jejuni is a major cause of global foodborne illnesses. To develop alternative antimicrobial strategies against C. jejuni, this study designed and optimized the green synthesis of metallic nanoparticles (NPs) with intracellular components of the medicinal fungus Ganoderma sessile to provide the needed reducing and stabilizing agents. NPs were characterized by transmission electron microscopy and dynamic light scattering, and the quasi-spherical NPs had sizes of 2.9 ± 0.9 nm for the copper oxide NPs and 14.7 ± 0.6 nm for the silver NPs. Surface charge assessment revealed zeta potentials of -21.0 ± 6.5 mV and -24.4 ± 7.9 mV for the copper oxide and silver NPs, respectively. The growth inhibition of C. jejuni by the NPs occurred through attachment to the outer cell membrane and subsequent intracellular internalization and resulted in minimum inhibitory concentrations of the silver NPs at 6 µg/mL and copper oxide NPs at 10 µg/mL. On the other hand, a differential ROS production caused by silver and copper NPs was observed. In summary, this research presents the first demonstration of using green synthesis with the medicinal fungus G. sessile to produce metallic NPs that effectively inhibit C. jejuni growth, providing a sustainable and effective approach to the traditional use of antimicrobials.

3.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999926

RESUMO

Advanced Oxidation Processes (AOPs) offer promising methods for disinfection by generating radical species like hydroxyl radicals, superoxide anion radicals, and hydroxy peroxyl, which can induce oxidative stress and deactivate bacterial cells. Photocatalysis, a subset of AOPs, activates a semiconductor using specific electromagnetic wavelengths. A novel material, Cu/Cu2O/CuO nanoparticles (NPs), was synthesized via a laser ablation protocol (using a 1064 nm wavelength laser with water as a solvent, with energy ranges of 25, 50, and 80 mJ for 10 min). The target was sintered from 100 °C to 800 °C at rates of 1.6, 1.1, and 1 °C/min. The composite phases of Cu, CuO, and Cu2O showed enhanced photocatalytic activity under visible-light excitation at 368 nm. The size of Cu/Cu2O/CuO NPs facilitates penetration into microorganisms, thereby improving the disinfection effect. This study contributes to synthesizing mixed copper oxides and exploring their activation as photocatalysts for cleaner surfaces. The electronic and electrochemical properties have potential applications in other fields, such as capacitor materials. The laser ablation method allowed for modification of the band gap absorption and enhancement of the catalytic properties in Cu/Cu2O/CuO NPs compared to precursors. The disinfection of E. coli with Cu/Cu2O/CuO systems serves as a case study demonstrating the methodology's versatility for various applications, including disinfection against different microorganisms, both Gram-positive and Gram-negative.


Assuntos
Cobre , Escherichia coli , Cobre/química , Escherichia coli/efeitos dos fármacos , Catálise , Nanopartículas Metálicas/química , Lasers , Oxirredução , Desinfecção/métodos , Luz
4.
Heliyon ; 10(5): e27182, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455576

RESUMO

Antifouling coatings containing biocidal agents can be used to prevent the accumulation of biotic deposits on submerged surfaces; however, several commercial biocides can negatively affect the ecosystem. In this study, various formulations of a potential biocide product comprising copper nanoparticles and capsaicin supported on zeolite ZSM-5 were analyzed to determine the influence of the concentration of each component. The incorporation of copper was evidenced by scanning electron microscopy and energy dispersive spectroscopy. Similarly, Fourier-transform infrared spectroscopy confirmed that capsaicin was supported on the zeolite surface. The presence of capsaicin on the external zeolite surface significantly reduced the surface area of the zeolite. Finally, bacterial growth inhibition analysis showed that copper nanoparticles inhibited the growth of strains Idiomarina loihiensis UCO25, Pseudoalteromonas sp. UCO92, and Halomonas boliviensis UCO24 while the organic component acted as a reinforcing biocide.

5.
Antibiotics (Basel) ; 13(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38534650

RESUMO

Copper oxide nanoparticles (NCuO) have emerged as an alternative to pesticides due to their antifungal effect against various phytopathogens. Combining them with fungicides represents an advantageous strategy for reducing the necessary amount of both agents to inhibit fungal growth, simultaneously reducing their environmental release. This study aimed to evaluate the antifungal activity of NCuO combined with three fungicide models separately: Iprodione (IPR), Tebuconazole (TEB), and Pyrimethanil (PYR) against two phytopathogenic fungi: Botrytis cinerea and Fusarium oxysporum. The fractional inhibitory concentration (FIC) was calculated as a synergism indicator (FIC ≤ 0.5). The NCuO interacted synergistically with TEB against both fungi and with IPR only against B. cinerea. The interaction with PYR was additive against both fungi (FIC > 0.5). The B. cinerea biomass was inhibited by 80.9% and 93% using 20 mg L-1 NCuO + 1.56 mg L-1 TEB, and 40 mg L-1 NCuO + 12 µg L-1 IPR, respectively, without significant differences compared to the inhibition provoked by 160 mg L-1 NCuO. Additionally, the protein leakage and nucleic acid release were also evaluated as mechanisms associated with the synergistic effect. The results obtained in this study revealed that combining nanoparticles with fungicides can be an adequate strategy to significantly reduce the release of metals and agrochemicals into the environment after being used as antifungals.

6.
Anal Bioanal Chem ; 416(4): 861-872, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38062198

RESUMO

Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) based on micro/nanostructured materials with different natures has received increasing attention for the analysis of a wide variety of analytes. However, up to now, only a few studies have shown the application of simple platforms in MALDI-MS for the identification of intact proteins. The present work reports on the application of copper oxide particles (Cu2O PS), obtained by a greener route, in combination with low amounts of 2,5-dihydroxybenzoic acid (DHB) as a novel hybrid platform. The combined Cu2O PS@DHB matrix, containing only 2.5 mg mL-1 of particles and 10 mg mL-1 of DHB, was easily applicable in MALDI-MS without surface modification of target plates. Under optimal conditions, the analysis of intact proteins up to 150,000 Da was possible, including immunoglobulin G, bovine serum albumin, and cytochrome C with adequate spot-to-spot signal reproducibility (RSD < 10%). In addition, the analysis of glycopeptides from IgG digests was carried out to prove the multipurpose application of the Cu2O PS@DHB platform in the low m/z range (2500-3000 Da). From the obtained results, it can be concluded that the optical and surface properties of as-synthesized Cu2O PS are likely to be responsible for the superior performance of Cu2O PS@DHB in comparison with conventional matrices. In this sense, the proposed user-friendly methodology opens up the prospect for possible implementation in bioanalysis and diagnostic research.


Assuntos
Cobre , Glicopeptídeos , Hidroxibenzoatos , Reprodutibilidade dos Testes , Gentisatos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Proteínas/análise , Lasers , Óxidos
7.
Antibiotics (Basel) ; 12(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37627671

RESUMO

Copper oxide nanoparticles (CuONPs) were synthesized using an eco-friendly method and their antimicrobial and biocompatibility properties were determined. The supernatant and extract of the fungus Ganoderma sessile yielded small, quasi-spherical NPs with an average size of 4.5 ± 1.9 nm and 5.2 ± 2.1 nm, respectively. Nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), and zeta potential analysis. CuONPs showed antimicrobial activity against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa). The half-maximal inhibitory concentration (IC50) for E. coli was 8.5 µg/mL, for P. aeruginosa was 4.1 µg/mL, and for S. aureus was 10.2 µg/mL. The ultrastructural analysis of bacteria exposed to CuONPs revealed the presence of small CuONPs all through the bacterial cells. Finally, the toxicity of CuONPs was analyzed in three mammalian cell lines: hepatocytes (AML-12), macrophages (RAW 264.7), and kidney (MDCK). Low concentrations (<15 µg/mL) of CuONPs-E were non-toxic to kidney cells and macrophages, and the hepatocytes were the most susceptible to CuONPs-S. The results obtained suggest that the CuONPs synthesized using the extract of the fungus G. sessile could be further evaluated for the treatment of superficial infectious diseases.

8.
Environ Sci Pollut Res Int ; 30(43): 98211-98230, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37606781

RESUMO

This paper proposes the study of a solar-based photocatalytic ozonation process for the degradation of salicylic acid (SA) using a novel S-scheme ZnO/Cu2O/CuO/carbon xerogel photocatalyst. The incorporation of CuO and Cu2O aims to enhance charge mobility through the formation of p-n heterojunctions with ZnO, whereas the carbon xerogel (XC) was selected due to its eco-friendly nature, capacity to stabilize S-scheme heterojunctions as a solid-state electron mediator, and ability to function as a reducing agent under high temperatures. The characterization of the composites demonstrates that the presence of the XC during the calcination step led to the reduction of a fraction of the CuO into Cu2O, forming a ternary semiconductor heterojunction system. In terms of photocatalysis, the XC/ZnO-CuxO 5% composite achieved the best efficiency for salicylic acid degradation, mainly due to the stabilization of the S-scheme charge transfer pathway between the ZnO/CuO/Cu2O semiconductors by the XC. The total organic carbon (TOC) removal during heterogeneous photocatalysis was 80% for the solar-based process and 68% for the visible light process, after 300 min. The solar-based photocatalytic ozonation process was highly successful regarding the degradation of SA, achieving a 75% increase in the apparent reaction rate constant when compared to heterogeneous photocatalysis. Furthermore, a 78% TOC removal was achieved after 150 min, which is half the time required by the heterogeneous photocatalysis to obtain the same result. Temperature, salinity, and turbidity had major effects on the efficiency of the photocatalytic ozonation process; the system's pH did not cause any major performance variation, which holds relevance for industrial applications.


Assuntos
Ozônio , Óxido de Zinco , Temperatura , Salinidade , Carbono , Ácido Salicílico , Concentração de Íons de Hidrogênio
9.
J Environ Sci Health B ; 58(5): 399-412, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37282543

RESUMO

Imazapyr (IMA) is currently applied as pre- and post-emergence herbicide for control of weeds in crops. Because of its extensive use, IMA residues may reach water sources and soils. Consequently, its accurate measurement is demanded for timely actions with minimal involved steps and analysis time. Herein, copper oxide particles (Cu2O PS) were proposed as chemical sensor for determination of IMA residues. Cu2O PS were prepared by a facile microwave-assisted method using glucose as reducing agent and polyvinylpyrrolidone as stabilizer. The effect of main experimental parameters on the conversion rate of the Cu2O PS were analyzed by the response surface methodology. Obtained particles were thoroughly characterized in order to determine the particle size distribution, morphology, surface charge, optical and surface properties for further application. Determination of IMA was only based on the localized surface plasmon resonance band of Cu2O PS at 473 nm. Under optimal conditions, the method was evaluated in the concentration range between 80.0 and 1,000 µg L-1 showing a limit of detection about 101 µg L-1 (R2 >0.98). The applicability of the proposed methodology to determine IMA in soil and water samples was assessed with satisfactory recoveries (104-121.8%) displaying a good implementation prospect in environmental complex matrices.


Assuntos
Cobre , Micro-Ondas , Cobre/química , Solo/química , Óxidos , Água
10.
Future Microbiol ; 18: 471-479, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37204307

RESUMO

Aim: The dose response in growth inhibition of Staphylococcus aureus treated with colloidal copper oxide nanoparticles (CuO-NP) was evaluated. Methods: An in vitro microbial viability assay was conducted with CuO-NP concentrations spreading over the 0.4-848.0 µg/ml range. The dose-response curve was modeled with a double Hill equation. UV-Visible absorption and photoluminescence spectroscopies allowed tracking concentration-dependent modifications in CuO-NP. Results: Two specific phases separated by the critical concentration of 26.5 µg/ml were observed in the dose-response curve, with each exhibiting proper IC50 parameters, Hill coefficients and relative amplitudes. Spectroscopy techniques reveal the occurrence of a concentration-triggered aggregation of CuO-NP starting from this critical concentration. Conclusion: The findings demonstrate a dose-related change in S. aureus sensitivity to CuO-NP, which probably arises from the aggregation of this agent.


Antibacterial agents are often used to stop the growth of bacteria such as Staphylococcus aureus (S. aureus). Copper oxide nanoparticles (CuO-NP) stand as a promising candidate for this purpose. Generally, the agent´s effectiveness is inspected following a dose-response curve in which de agent´s antibacterial response is plotted against its dose (concentration). In this work, employing an extended mathematical interpretation we were capable of discerning experimentally the existence of two stages of dose-response (biphasic dose-response) in the treatment of S. aureus with CuO-NP. These results in combination with insights from spectroscopic techniques lead to the understanding that the biphasic behavior arises from the aggregation of CuO-NP at high concentrations. Therefore, according to the adopted concentration to treat S. aureus, the agent can behave as a dispersed nanoparticle or as an aggregated nanoparticle. In summary, understanding whether antibacterial agents transform as a function of concentration is important in determining their practical applications.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Staphylococcus aureus , Cobre/farmacologia , Nanopartículas Metálicas/química , Nanopartículas/química , Óxidos , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA