Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Hum Neurosci ; 16: 1043501, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504625

RESUMO

The ability to learn motor skills implicates an improvement in accuracy, speed and consistency of movements. Motor control is related to movement execution and involves corticospinal neurons (CSp), which are broadly distributed in layer 5B of the motor and somatosensory cortices. CSp neurons innervate the spinal cord and are functionally diverse. However, whether CSp activity differs between different cortical areas throughout motor learning has been poorly explored. Given the importance and interaction between primary motor (M1) and somatosensory (S1) cortices related to movement, we examined the functional roles of CSp neurons in both areas. We induced the expression of GCaMP7s calcium indicator to perform photometric calcium recordings from layer 5B CSp neurons simultaneously in M1 and S1 cortices and track their activity while adult mice learned and performed a cued lever-press task. We found that during early learning sessions, the population calcium activity of CSp neurons in both cortices during movement did not change significantly. In late learning sessions the peak amplitude and duration of calcium activity CSp neurons increased in both, M1 and S1 cortices. However, S1 and M1 CSp neurons display a different temporal dynamic during movements that occurred when animals learned the task; both M1 and S1 CSp neurons activate before movement initiation, however, M1 CSp neurons continue active during movement performance, reinforcing the idea of the diversity of the CSp system and suggesting that CSp neuron activity in M1 and S1 cortices throughout motor learning have different functional roles for sensorimotor integration.

2.
J Chem Neuroanat ; 125: 102159, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36087877

RESUMO

Lesions to the corticospinal tract result in several neurological symptoms and several rehabilitation protocols have proven useful in attempts to direct underlying plastic phenomena. However, the effects that such protocols may exert on the dendritic spines of motoneurons to enhance accuracy during rehabilitation are unknown. Thirty three female Sprague-Dawley adult rats were injected stereotaxically at the primary motor cerebral cortex (Fr1) with saline (CTL), or kainic acid (INJ), or kainic acid and further rehabilitation on a treadmill 16 days after lesion (INJ+RB). Motor performance was evaluated with the the Basso, Beatie and Bresnahan (BBB) locomotion scale and in the Rotarod. Spine density was quantified in a primary dendrite of motoneurons in Lamina IX in the ventral horn of the thoracolumbar spinal cord as well as spine morphology. AMPA, BDNF, PSD-95 and synaptophysin expression was evaluated by Western blot. INJ+RB group showed higher scores in motor performance. Animals from the INJ+RB group showed more thin, mushroom, stubby and wide spines than the CTL group, while the content of AMPA, BDNF, PSD-95 and Synaptophysin was not different between the groups INJ+RB and CTL. AMPA and synaptophysin content was greater in INJ group than in CTL and INJ+RB groups. The increase in the proportion of each type of spine observed in INJ+RB group suggest spinogenesis and a greater capability to integrate the afferent information to motoneurons under relatively stable molecular conditions at the synaptic level.


Assuntos
Córtex Motor , Animais , Feminino , Ratos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Espinhas Dendríticas/fisiologia , Ácido Caínico , Córtex Motor/metabolismo , Neurônios Motores/metabolismo , Ratos Sprague-Dawley
3.
Clin Anat ; 34(8): 1224-1232, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34478213

RESUMO

The corticospinal tract (CST) is the main neural pathway responsible for conducting voluntary motor function in the central nervous system. The CST condenses into fiber bundles as it descends from the frontoparietal cortex, traveling down to terminate at the anterior horn of the spinal cord. The CST is at risk of injury from vascular insult from strokes and during neurosurgical procedures. The aim of this article is to identify and describe the vasculature associated with the CST from the cortex to the medulla. Dissection of cadaveric specimens was carried out in a manner, which exposed and preserved the fiber tracts of the CST, as well as the arterial systems that supply them. At the level of the motor cortex, the CST is supplied by terminal branches of the anterior cerebral artery and middle cerebral artery. The white matter tracts of the corona radiata and internal capsule are supplied by small perforators including the lenticulostriate arteries and branches of the anterior choroidal artery. In the brainstem, the CST is supplied by anterior perforating branches from the basilar and vertebral arteries. The caudal portions of the CST in the medulla are supplied by the anterior spinal artery, which branches from the vertebral arteries. The non-anastomotic nature of the vessel systems of the CST highlights the importance of their preservation during neurosurgical procedures. Anatomical knowledge of the CST is paramount to clinical diagnosis and treatment of heterogeneity of neurodegenerative, neuroinflammatory, cerebrovascular, and skull base tumors.


Assuntos
Tronco Encefálico/irrigação sanguínea , Artérias Cerebrais/anatomia & histologia , Córtex Cerebral/irrigação sanguínea , Tratos Piramidais/irrigação sanguínea , Idoso , Cadáver , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Procedimentos Neurocirúrgicos , Acidente Vascular Cerebral/fisiopatologia
4.
J Neurotrauma ; 38(15): 2084-2102, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33599152

RESUMO

Complete spinal cord lesions interrupt the connection of all axonal projections with their neuronal targets below and above the lesion site. In particular, the interruption of connections with the neurons at lumbar segments after thoracic injuries impairs voluntary body control below the injury. The failure of spontaneous regrowth of transected axons across the lesion prevents the reconnection and reinnervation of the neuronal targets. At present, the only treatment in humans that has proven to promote some degree of locomotor recovery is physical therapy. The success of these strategies, however, depends greatly on the type of lesion and the level of preservation of neural tissue in the spinal cord after injury. That is the reason it is key to design strategies to promote axonal regrowth and neuronal reconnection. Here, we test the use of a developmental axon guidance molecule as a biological agent to promote axonal regrowth, axonal reconnection, and recovery of locomotor activity after spinal cord injury (SCI). This molecule, netrin-1, guides the growth of the corticospinal tract (CST) during the development of the central nervous system. To assess the potential of this molecule, we used a model of complete spinal cord transection in rats, at thoracic level 10-11. We show that in situ delivery of netrin-1 at the epicenter of the lesion: (1) promotes regrowth of CST through the lesion and prevents CST dieback, (2) promotes synaptic reconnection of regenerated motor and sensory axons, and (3) preserves the polymerization of the neurofilaments in the sciatic nerve axons. These anatomical findings correlate with a significant recovery of locomotor function. Our work identifies netrin-1 as a biological agent with the capacity to promote the functional repair and recovery of locomotor function after SCI. These findings support the use of netrin-1 as a therapeutic intervention to be tested in humans.


Assuntos
Locomoção/fisiologia , Netrina-1/administração & dosagem , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Modelos Animais de Doenças , Injeções Espinhais , Masculino , Tratos Piramidais , Ratos , Ratos Endogâmicos WKY , Proteínas Recombinantes , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/fisiopatologia , Vértebras Torácicas
5.
Neuroradiology ; 63(2): 217-224, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32876704

RESUMO

PURPOSE: The aim of this study was to evaluate the integrity of the corticospinal tracts (CST) in patients with SCA3 and age- and gender-matched healthy control subjects using diffusion tensor imaging (DTI). We also looked at the clinical correlates of such diffusivity abnormalities. METHODS: We assessed 2 cohorts from different Brazilian centers: cohort 1 (n = 29) scanned in a 1.5 T magnet and cohort 2 (n = 91) scanned in a 3.0 T magnet. We used Pearson's coefficients to assess the correlation of CST DTI parameters and ataxia severity (expressed by SARA scores). RESULTS: Two different results were obtained. Cohort 1 showed no significant between-group differences in DTI parameters. Cohort 2 showed significant between-group differences in the FA values in the bilateral precentral gyri (p < 0.001), bilateral superior corona radiata (p < 0.001), bilateral posterior limb of the internal capsule (p < 0.001), bilateral cerebral peduncle (p < 0.001), and bilateral basis pontis (p < 0.001). There was moderate correlation between CST diffusivity parameters and SARA scores in cohort 2 (Pearson correlation coefficient: 0.40-0.59). CONCLUSION: DTI particularly at 3 T is able to uncover and quantify CST damage in SCA3. Moreover, CST microstructural damage may contribute with ataxia severity in the disease.


Assuntos
Doença de Machado-Joseph , Tratos Piramidais , Substância Branca , Imagem de Tensor de Difusão , Humanos , Cápsula Interna , Doença de Machado-Joseph/diagnóstico por imagem , Tratos Piramidais/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
6.
Int. j. morphol ; 38(6): 1614-1617, Dec. 2020. graf
Artigo em Espanhol | LILACS | ID: biblio-1134487

RESUMO

RESUMEN: La neuroanatomía y la neurofisiología han permitido en gran parte entender de forma más integrada las estructuras que conforman el sistema nervioso y los mecanismos asociados con la transmisión de los potenciales de acción, relacionados con la vía corticoespinal en la ejecución de movimientos voluntarios. Se realizó una revisión histórica sobre la vía corticoespinal, desde el punto de vista neuroanatómico y neurofisiológico mediante una revisión de literatura en distintas bases de datos y libros de texto dedicados a estas vías nerviosas. La información obtenida se ordenó cronológicamente, seleccionando los datos más relevantes que desde el punto de vista neuroanatómico y neurofisiológico han permitido comprender su mecanismo funcional. Actualmente se tiene un conocimiento muy depurado de los distintos elementos que componen la vía corticoespinal, lo que permitirá su aplicación en el campo de la salud y resolver múltiples problemas de la función motora.


SUMMARY: Neuroanatomy and Neurophysiology have, in large part, permitted a more thorough understanding of those structures that conform the nervous system and mechanisms associated with the transmission of action potentials associated with the corticospinal tract. This assertion is made based upon a literature review of various databases and textbooks dedicated to said nerve tracts. The information obtained was ordered chronologically, and data was selected that, from the neuroanatomical and neurophysiological viewpoints, were most relevant and have permitted the comprehension of its functional mechanism. The thorough understanding of those elements that compose the corticospinal tract will permit its application in the health field and resolve multiple motor function problems.


Assuntos
Humanos , História Antiga , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , Tratos Piramidais/anatomia & histologia , Tratos Piramidais/fisiologia , Neuroanatomia/história , Neurofisiologia/história
7.
Front Neurol ; 10: 445, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156529

RESUMO

Stroke is a leading cause of disability worldwide. Motor impairments occur in most of the patients with stroke in the acute phase and contribute substantially to disability. Diffusion tensor imaging (DTI) biomarkers such as fractional anisotropy (FA) measured at an early phase after stroke have emerged as potential predictors of motor recovery. In this narrative review, we: (1) review key concepts of diffusion MRI (dMRI); (2) present an overview of state-of-art methodological aspects of data collection, analysis and reporting; and (3) critically review challenges of DTI in stroke as well as results of studies that investigated the correlation between DTI metrics within the corticospinal tract and motor outcomes at different stages after stroke. We reviewed studies published between January, 2008 and December, 2018, that reported correlations between DTI metrics collected within the first 24 h (hyperacute), 2-7 days (acute), and >7-90 days (early subacute) after stroke. Nineteen studies were included. Our review shows that there is no consensus about gold standards for DTI data collection or processing. We found great methodological differences across studies that evaluated DTI metrics within the corticospinal tract. Despite heterogeneity in stroke lesions and analysis approaches, the majority of studies reported significant correlations between DTI biomarkers and motor impairments. It remains to be determined whether DTI results could enhance the predictive value of motor disability models based on clinical and neurophysiological variables.

8.
Brain Res ; 1707: 27-44, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30448443

RESUMO

The aim of this study was to evaluated motor function and morphological aspects of the components involved in motor control (sensorimotor cortex, spinal cord, sciatic nerve, neuromuscular junctions and skeletal muscle) in male Wistar rats exposed to a model of neonatal hypoxic-ischemic encephalopathy (HIE) and the possible influence of different physical exercise protocols - treadmill and acrobatic. Male Wistar rats at the 7th post-natal day (PND) were submitted to the HIE model and from the 22nd until 60th PND the exercise protocols (treadmill or acrobatic training) were running. After the training, the animals were evaluated in Open Field, Ladder Rung Walking and Rotarod tasks and after samples of the motor control components were collected. Our results evidenced that the acrobatic training reversed the hyperactivity and anxiety, caused locomotion improvement and decreased brain atrophy in HIE animals. We did not find morphological differences on sensorimotor cortex, spinal cord, sciatic nerve, neuromuscular junctions and skeletal muscle in the animals submitted to HIE model. These intriguing data support the statement of the Rice-Vannucci model does not seem to reproduce, in structures involved in control function, the damage found in humans that suffer HIE. Regarding the protocols of exercise, we proposed that the acrobatic exercise could be a good therapeutic option especially in children affected by neonatal HIE and can be responsible for good results in cognitive and motor aspects.


Assuntos
Hipóxia-Isquemia Encefálica/fisiopatologia , Atividade Motora/fisiologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Hipóxia/fisiopatologia , Hipóxia-Isquemia Encefálica/metabolismo , Isquemia/fisiopatologia , Locomoção/fisiologia , Masculino , Condicionamento Físico Animal/métodos , Gravidez , Ratos , Ratos Wistar , Córtex Sensório-Motor/fisiopatologia
9.
Clin Neurophysiol ; 129(8): 1688-1698, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29940480

RESUMO

Transcranial magnetic stimulation (TMS) is a valuable technique to assess and modulate human brain function in normal and pathological conditions. This critical review surveys the contributions of TMS to the diagnosis, insight into pathophysiology and treatment of genetically confirmed hereditary ataxias, a heterogeneous group of neurodegenerative disorders that can affect motor cortex and the corticospinal tract. Most studies were conducted on small sample sizes and focused on diagnostic approaches. The available data demonstrate early involvement of the corticospinal tract and motor cortex circuitry, and support the possible efficacy of cerebellar repetitive TMS (rTMS) as therapeutic approach. Further TMS-based studies are warranted, to establish biomarkers for early diagnosis and disease monitoring, explore the involvement of the cerebello-dentato-thalamo-cortical projection, study the effects of rTMS-induced plasticity, and utilize rTMS for treatment.


Assuntos
Degenerações Espinocerebelares/diagnóstico , Degenerações Espinocerebelares/fisiopatologia , Estimulação Magnética Transcraniana/métodos , Feminino , Humanos , Masculino , Degenerações Espinocerebelares/terapia , Estimulação Magnética Transcraniana/tendências , Resultado do Tratamento
10.
Neuroimage Clin ; 19: 848-857, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946510

RESUMO

SPG11 mutations are the major cause of autosomal recessive Hereditary Spastic Paraplegia. The disease has a wide phenotypic variability indicating many regions of the nervous system besides the corticospinal tract are affected. Despite this, anatomical and phenotypic characterization is restricted. In the present study, we investigate the anatomical abnormalities related to SPG11 mutations and how they relate to clinical and cognitive measures. Moreover, we aim to depict how the disease course influences the regions affected, unraveling different susceptibility of specific neuronal populations. We performed clinical and paraclinical studies encompassing neuropsychological, neuroimaging, and neurophysiological tools in a cohort of twenty-five patients and age matched controls. We assessed cortical thickness (FreeSurfer software), deep grey matter volumes (T1-MultiAtlas tool), white matter microstructural damage (DTI-MultiAtlas) and spinal cord morphometry (Spineseg software) on a 3 T MRI scan. Mean age and disease duration were 29 and 13.2 years respectively. Sixty-four percent of the patients were wheelchair bound while 84% were demented. We were able to unfold a diffuse pattern of white matter integrity loss as well as basal ganglia and spinal cord atrophy. Such findings contrasted with a restricted pattern of cortical thinning (motor, limbic and parietal cortices). Electromyography revealed motor neuronopathy affecting 96% of the probands. Correlations with disease duration pointed towards a progressive degeneration of multiple grey matter structures and spinal cord, but not of the white matter. SPG11-related hereditary spastic paraplegia is characterized by selective neuronal vulnerability, in which a precocious and widespread white matter involvement is later followed by a restricted but clearly progressive grey matter degeneration.


Assuntos
Gânglios da Base/diagnóstico por imagem , Mutação , Proteínas/genética , Paraplegia Espástica Hereditária/genética , Substância Branca/diagnóstico por imagem , Adolescente , Adulto , Imagem de Tensor de Difusão , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Testes Neuropsicológicos , Paraplegia Espástica Hereditária/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA