Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem (Oxf) ; 6: 100155, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36582744

RESUMO

Chronic Non-Communicable Diseases (NCDs) have been considered a global health problem, characterized as diseases of multiple factors, which are developed throughout life, and regardless of genetics as a risk factor of important relevance, the increase in mortality attributed to the disease to environmental factors and the lifestyle one leads. Although the reactive species (ROS/RNS) are necessary for several physiological processes, their overproduction is directly related to the pathogenesis and aggravation of NCDs. In contrast, dietary polyphenols have been widely associated with minimizing oxidative stress and inflammation. In addition to their antioxidant power, polyphenols have also drawn attention for being able to modulate both gene expression and modify epigenetic alterations, suggesting an essential involvement in the prevention and/or development of some pathologies. Therefore, this review briefly explained the mechanisms in the development of some NCDs, followed by a summary of some evidence related to the interaction of polyphenols in oxidative stress, as well as the modulation of epigenetic mechanisms involved in the management of NCDs.

2.
Neurol Res ; 39(1): 73-82, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27809706

RESUMO

Reactive species play an important role in physiological functions. Overproduction of reactive species, notably reactive oxygen (ROS) and nitrogen (RNS) species along with the failure of balance by the body's antioxidant enzyme systems results in destruction of cellular structures, lipids, proteins, and genetic materials such as DNA and RNA. Moreover, the effects of reactive species on mitochondria and their metabolic processes eventually cause a rise in ROS/RNS levels, leading to oxidation of mitochondrial proteins, lipids, and DNA. Oxidative stress has been considered to be linked to the etiology of many diseases, including neurodegenerative diseases (NDDs) such as Alzheimer diseases, Amyotrophic lateral sclerosis, Friedreich's ataxia, Huntington's disease, Multiple sclerosis, and Parkinson's diseases. In addition, oxidative stress causing protein misfold may turn to other NDDs include Creutzfeldt-Jakob disease, Bovine Spongiform Encephalopathy, Kuru, Gerstmann-Straussler-Scheinker syndrome, and Fatal Familial Insomnia. An overview of the oxidative stress and mitochondrial dysfunction-linked NDDs has been summarized in this review.


Assuntos
Doenças Mitocondriais/etiologia , Doenças Neurodegenerativas/complicações , Estresse Oxidativo/fisiologia , Animais , Humanos
3.
Br J Nutr ; 116(11): 1901-1911, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27923410

RESUMO

Se and green tea have been shown in epidemiological, observational and preclinical studies to be inversely related to the risk of developing colorectal cancer (CRC). However, there are limited studies to evaluate their regulatory effects on genes/proteins that relate to CRC oncogenesis in human subjects, such as selenoproteins, WNT signalling pathway, inflammation and methylation. This study examined the effects of supplementation of Se using Brazil nuts and green tea extract (GTE) capsules, alone and in combination, on targeted biomarkers. In total, thirty-two volunteers (>50 years of age) with plasma Se≤1·36 µmol/l were randomised to one of three treatment groups: nine to Se (approximately 48 µg/d) as six Brazil nuts, eleven to four GTE capsules (800 mg (-)-epigallocatechin-3-gallate) and twelve to a combination of Brazil nuts and GTE. Blood and rectal biopsies were obtained before and after each intervention. Plasma Se levels, rectal selenoprotein P (SePP) and ß-catenin mRNA increased significantly in subjects consuming Brazil nuts alone or in combination, whereas rectal DNA methyltransferase (DNMT1) and NF-κB mRNA were reduced significantly in subjects consuming GTE alone or in combination. None of the interventions significantly affected rectal acetylated histone H3 or Ki-67 expression at the protein level or plasma C-reactive protein. Effects of the combination of Brazil nuts and GTE did not differ from what would be expected from either agent alone. In conclusion, supplementation of Brazil nuts and/or GTE regulates targeted biomarkers related to CRC oncogenesis, specifically genes associated with selenoproteins (SePP), WNT signalling (ß-catenin), inflammation (NF-κB) and methylation (DNMT1). Their combination does not appear to provide additional effects compared with either agent alone.


Assuntos
Anticarcinógenos/uso terapêutico , Bertholletia , Camellia sinensis/química , Neoplasias Colorretais/prevenção & controle , Suplementos Nutricionais , Nozes , Extratos Vegetais/uso terapêutico , Idoso , Bertholletia/efeitos adversos , Bertholletia/química , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Suplementos Nutricionais/efeitos adversos , Estudos de Viabilidade , Feminino , Manipulação de Alimentos , Alimento Funcional/efeitos adversos , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade , Nozes/efeitos adversos , Nozes/química , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química , Folhas de Planta/química , Reto/metabolismo , Reto/patologia , Risco , Selênio/administração & dosagem , Selênio/efeitos adversos , Selênio/sangue , Selênio/uso terapêutico , Austrália do Sul/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA