Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Toxicon ; 247: 107827, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38909760

RESUMO

Of the mycotoxicoses caused by molds contaminating grains or their byproducts, leukoencephalomalacia of horses and less frequently aflatoxicosis in cattle have been reported in South America. However, the most important group of mycotoxins in the region are those caused by fungi that infect forages and other types of plants and have regional distribution. In this group, ergotism is important, both caused by Claviceps purpurea infecting grains or by Epichloë coenophiala infecting Schedonorus arundinaceus. Other important mycotoxicoses are those caused by indole-diterpenes produced by Clavicipitaceous fungi including Claviceps paspali in Paspalum spp., Claviceps cynodontes in Cynodon dactylon, and by Periglandula a seed transmitted symbiont associated with the tremorgenic plant Ipomoea asarifolia. The latter is an important poisoning in the northeastern and northern Brazil. Other important mycotoxicoses are those caused by swainsonine containing plants. It was demonstrated that swainsonine contained in Ipomoea carnea var. fistulosa is produced by an epibiotic fungus of the order Chaetothyriales whose mycelia develop on the adaxial surface of the leaves. Swainsonine is also produced by the symbiotic, endobiotic fungi Alternaria section Undifilum spp., which is associated with Astragalus spp. in the Argentinian Patagonia causing poisoning. Another form of mycotoxicosis occurs in poisoning by Baccharis spp., mainly B. coridifolia, a very important toxic plant in South America that contains macrocyclic trichothecenes probably produced by an endophytic fungus that has not yet been identified. Pithomycotoxicosis caused by Pithomyces chartarum used to be an important mycotoxicosis in the region, mainly in cattle grazing improved pastures of legumes and grasses. Slaframine poisoning, diplodiosis and poisoning by barley contaminated by Aspergillus clavatus has been rarely diagnosed in Brazil, Uruguay and Argentina.


Assuntos
Micotoxicose , Micotoxinas , Ruminantes , Micotoxinas/toxicidade , Animais , Micotoxicose/veterinária , América do Sul , Cavalos , Bovinos
2.
Molecules ; 29(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38930790

RESUMO

Seven new abietane diterpenoids, comprising medusanthol A-G (1-3, 5, 7-9) and two previously identified analogs (4 and 6), were isolated from the hexane extract of the aerial parts of Medusantha martiusii. The structures of the compounds were elucidated by HRESIMS, 1D/2D NMR spectroscopic data, IR spectroscopy, NMR calculations with DP4+ probability analysis, and ECD calculations. The anti-neuroinflammatory potential of compounds 1-7 was evaluated by determining their ability to inhibit the production of nitric oxide (NO) and the proinflammatory cytokine TNF-α in BV2 microglia stimulated with LPS and IFN-γ. Compounds 1-4 and 7 exhibited decreased NO levels at a concentration of 12.5 µM. Compound 1 demonstrated strong activity with an IC50 of 3.12 µM, and compound 2 had an IC50 of 15.53 µM; both compounds effectively reduced NO levels compared to the positive control quercetin (IC50 11.8 µM). Additionally, both compounds significantly decreased TNF-α levels, indicating their potential as promising anti-neuroinflammatory agents.


Assuntos
Abietanos , Anti-Inflamatórios , Microglia , Óxido Nítrico , Abietanos/farmacologia , Abietanos/química , Abietanos/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Animais , Óxido Nítrico/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Linhagem Celular , Estrutura Molecular , Lipopolissacarídeos , Componentes Aéreos da Planta/química
3.
Pharmaceuticals (Basel) ; 17(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38794204

RESUMO

Safer analgesic drugs remain a hard challenge because of cardiovascular and/or gastrointestinal toxicity, mainly. So, this study evaluated in vivo the antiproliferative actions of a fraction with casearins (FC) from Casearia sylvestris leaves against human colorectal carcinomas and antihyperalgesic effects on inflammatory- or opiate-based pain relief and oncologic pain in Sarcoma 180 (S180)-bearing mice. Moreover, docking investigations evaluated the binding among Casearin X and NMDA(N-methyl-D-aspartate)-type glutamate receptors. HCT-116 colorectal carcinoma-xenografted mice were treated with FC for 15 days. Antinociceptive assays included chemically induced algesia and investigated mechanisms by pharmacological blockade. Intraplantar region S180-bearing animals received a single dose of FC and were examined for mechanical allodynia and behavior alterations. AutoDock Vina determined molecular interactions among Cas X and NMDA receptor subunits. FC reduced tumor growth at i.p. (5 and 10 mg/kg) and oral (25 mg/kg/day) doses (31.12-39.27%). FC reduced abdominal pain, as confirmed by formalin and glutamate protocols, whose antinociception activity was blocked by naloxone and L-NAME (neurogenic phase) and naloxone, atropine, and flumazenil (inflammatory phase). Meanwhile, glibenclamide potentiated the FC analgesic effects. FC increased the paw withdrawal threshold without producing changes in exploratory parameters or motor coordination. Cas X generated a more stable complex with active sites of the NMDA receptor GluN2B subunits. FC is a promising antitumor agent against colorectal carcinomas, has peripheral analgesic effects by desensitizing secondary afferent neurons, and inhibits glutamate release from presynaptic neurons and/or their action on cognate receptors. These findings emphasize the use of clerodane diterpenes against cancer-related pain conditions.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38619589

RESUMO

To evaluate the antibacterial, antibiofilm and antivirulence potential of the main diterpenes from Copaifera spp. oleoresins against multidrug-resistant (MDR) bacteria. Antimicrobial assays included determination of the Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Minimum Inhibitory Concentration of Biofilm (MICB50), as well as synergistic and antivirulence assays for eight diterpenes against MDR. The tests revealed that two diterpenes (named 1 and 5) showed the best results, with MIC and MBC between 12.5 and 50 µg/mL against most MDR bacteria. These diterpenes exhibited promising MICB50 in concentration between 3.12-25 µg/mL but showed no synergistic antimicrobial activity. In the assessment of antivirulence activity, diterpenes 1 and 5 inhibited only one of the virulence factors evaluated (Dnase) produced by some strains of S. aureus at subinhibitory concentration (6.25 µg/mL). Results obtained indicated that diterpenes isolated from Copaifera oleoresin plays an important part in the search of new antibacterial and antibiofilm agents that can act against MDR bacteria.

5.
Nat Prod Res ; : 1-7, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538549

RESUMO

In the present work, the hexane extract of aerial parts of Baccharis quitensis Kunth. was subjected to chromatographic fractionation to afford two alkyl phenylpropanoids: n-docosyl (E)-p-coumarate (1) and n-tetracosyl (E)-p-coumarate (2) as well as five diterpenes: ent-kaurenoic acid (3), grandifloric acid (4), 15ß-senecioyl-oxy-ent-kaur-16-en-19-oic acid (5), and 15-oxo-ent-kaurenoic acid (6). Using an ex-vivo assay with macrophages infected with Trypanosoma cruzi, compounds 1 and 2 demonstrated high potency against intracellular amastigotes, with EC50 values of 7.5 and 6.9 µM, respectively. Compound 6 revealed a moderate potency against T. cruzi, with an EC50 of 25.6 µM, and compounds 3-5 showed no effectiveness. Additionally, compounds 1-6 compounds presented no toxicity for mammalian cells to the highest tested concentration of 200 µM. Based on potency and the selectivity indexes of 1, 2 and 6, these compounds could be future candidates for optimisation studies for the design of prototypes against Chagas disease.

6.
Nat Prod Res ; 38(6): 956-967, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37154695

RESUMO

Xylopia benthamii (Annonaceae) is a plant with limited phytochemical and pharmacological evidence. Thus, using LC-MS/MS, we performed exploratory analyses of the fruit extract of X. benthamii, resulting in the tentative identification of alkaloids (1-7) and diterpenes (8-13). Through the application of chromatography techniques with the extract of X. benthamii, two kaurane diterpenes were isolated, xylopinic acid (9) and ent-15-oxo-kaur-16-en-19-oic acid (11). Their structures were established using spectroscopy (NMR 1D/2D) and mass spectrometry. The isolated compounds were submitted to anti-biofilm analysis against Acinetobacter baumannii, anti-neuroinflammatory and cytotoxic activity in BV-2 cells. Compound 11 (201.75 µM) inhibited 35% of bacterial biofilm formation and high anti-inflammatory activity in BV-2 (IC50 = 0.78 µM). In conclusion, the results demonstrated that compound 11 was characterized for the first time with pharmacological potential in the development of new alternatives for studies with neuroinflammatory diseases.


Assuntos
Diterpenos , Xylopia , Xylopia/química , Frutas , Cromatografia Líquida , Espectrometria de Massas em Tandem , Diterpenos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
7.
Nat Prod Res, in press, 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5305

RESUMO

In the present work, the hexane extract of aerial parts of Baccharis quitensis Kunth. was subjected to chromatographic fractionation to afford two alkyl phenylpropanoids: n-docosyl (E)-p-coumarate (1) and n-tetracosyl (E)-p-coumarate (2) as well as five diterpenes: ent-kaurenoic acid (3), grandifloric acid (4), 15β-senecioyl-oxy-ent-kaur-16-en-19-oic acid (5), and 15-oxo-ent-kaurenoic acid (6). Using an ex-vivo assay with macrophages infected with Trypanosoma cruzi, compounds 1 and 2 demonstrated high potency against intracellular amastigotes, with EC50 values of 7.5 and 6.9 µM, respectively. Compound 6 revealed a moderate potency against T. cruzi, with an EC50 of 25.6 µM, and compounds 3–5 showed no effectiveness. Additionally, compounds 1–6 compounds presented no toxicity for mammalian cells to the highest tested concentration of 200 µM. Based on potency and the selectivity indexes of 1, 2 and 6, these compounds could be future candidates for optimisation studies for the design of prototypes against Chagas disease.

8.
Nat Prod Res ; : 1-5, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37915254

RESUMO

Propolis is a natural product widely used in folk medicine. Among its various applications, its antiparasitic properties stand out. Due to its great biodiversity, Brazil is a major producer of several types of propolis. This study proposes to evaluate the leishmanicidal properties of the hydroalcoholic extract of propolis collected in the southern region of Brazil (Brown propolis - HEBP) and its main isolated compounds: abietic acid (1), 13-epi-cupressic acid (2), 13-epi-torulosol (3), dehydroabietic acid (4), cis-communic acid (5) and ent-agatic acid (6). In general, the diterpenes did not show activity against the promastigotes of Leishmania (Leishmania) amazonensis at the evaluated concentrations. However, the HEBP was very active with an inhibition concentration of 50% at 8.32 µg/mL. Moreover, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) assays showed morphological and structural alterations in promastigote forms of L. (L.) amazonensis when incubated with HEBP.

9.
Mar Drugs ; 21(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37755097

RESUMO

Dictyotaceae algae have gained recognition as prolific producers of diterpenes, which are molecules with significant biotechnological potential. These diterpenes hold immense promise as potential active drug components, making the algae a compelling area of study. The present review aims to present the latest advancements in understanding the biopotential of Brazilian Dictyota and Canistrocarpus brown algae, shedding light on the remarkable diversity and the biological and pharmacological potential of the secondary metabolites they produce. A total of 78 articles featuring 26 distinct diterpenes are reported in this review, with their antiviral potential being the mosthighlighted biological activity. Despite considerable research on these algae and their diterpenes, significant knowledge gaps persist. Consequently, the present review is poised to serve as a pivotal resource for researchers who are actively engaged in the pursuit of active diterpenes beyond the immediate purview. Furthermore, it holds the potential to catalyze an increase in research endeavors centered around these algal species within the geographical confines of the Brazilian coastline. Also, it assumes a critical role in directing future scientific explorations toward a better comprehension of these compounds and their ecological implications.


Assuntos
Diterpenos , Phaeophyceae , Brasil , Antivirais , Biotecnologia , Diterpenos/farmacologia
10.
Antibiotics (Basel) ; 12(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37627751

RESUMO

Biotransformations are reactions mediated by microorganisms, such as fungi. These bioreactions have high chemo- and stereoselectivity on organic substrates and can be applied in the search for new bioactive compounds. In this study, acanthoic acid (AA) was biotransformed using the fungus Xylaria sp., giving the novel compound 3ß,7ß-dihydroxyacanthoic acid (S1). Both the AA and the product S1 were tested against Gram-positive and Gram-negative bacteria. To identify and validate possible biological targets as enzymes or proteins involved in the activity observed in vitro, we used the molecular docking method. Hydroxylation at the C-3 and C-7 positions of the biotransformation product enhanced its activity against Escherichia coli as well as its binding affinity and interactions with superoxide dismutase 1 (SOD1; PDB ID 4A7G). Based on our results, the SOD1 enzyme was suggested to be a possible target for the antioxidant activity of product S1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA